МЕТОДИКА ЭКСПЕРИМЕНТА

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

<u>POP</u>

Профили распределения

Исследовались зависимости распределения слоя дисилицида от дозы, тока, высокотемпературного отжига

<u>РОРКИ</u>

- 2- дефекты упаковки
- 3- точечные дефекты

Рис.7. Ориентированный <100> и неориентированный спектры для образца имплантированного ионами кобальта с энергией 180 кэВ, дозой 2*10¹⁷ ат/см² и с плотностью тока имплантации 5 мкА/см²

Рис.8. Ориентированный <100> и неориентированный спектры для образца имплантированного ионами кобальта с энергией 180 кэВ, дозой 2*10¹⁷ ат/см² и с плотностью тока имплантации 15 мкА/см²

Рис.9. Ориентированный <100> и неориентированный спектры для образца имплантированного ионами кобальта с энергией 180 кэВ, дозой 2*10¹⁷ ат/см² и с плотностью тока имплантации 30 мкА/см²

<u>ВЫВОДЫ:</u> С увеличением плотности тока улучшается степень кристалличности После отжига улучшается степень кристалличности, кобальт садится в узлы – уменьшается дефектность кристалла, образуется фаза дисилицида кобальта с четкой границей раздела.

Рис.10. Профили распределения для образца №1 (Е=180 кэВ, доза 1*10¹⁷ ат/см², плотность тока 5 мкА/см²) Рассчитанные с помощью программы RUMP ERD

Рис.11. Профили распределения для образца №5 (Е=180 кэВ, доза 2*10¹⁷ ат/см², плотность тока 30 мкА/см²) и образца №6 (Е=180 кэВ, доза 2*10¹⁷ ат/см², плотность тока 30 мкА/см², отжиг 1000 °C 30 мин) рассчитанные с помощью программы RUMP ERD

<u>ВЫВОДЫ:</u> доза 1*10¹⁷ недостаточна для получения хорошего слоя дисилицида кобальта. С увеличением дозы в два раза для образца без отжига заметно начало образования фаза CoSi₂ после отжига образуется хороший слой с четко выраженными границами раздела

С увеличением дозы имплантации профиль распределения ионов кобальта становиться уже и его максимум смещается по направлению к поверхности.

Рис.13. Экспериментальные профили распределения Со в кремнии для разных доз имплантации (полученные методом ВИМС).

<u>ВЫВОДЫ:</u> доза 3*10¹⁷ слишком велика для образования хорошего слоя Идет частичное распыление ? поверхности, слой дисилицида поднимается на поверхность образца, для точного понимания происходящих процессов необходимо моделирование (TRIM)

Рис.15. Профили распределения кобальта в кремнии (D = 1×10^{17} см⁻², E = 180 кэB, j = 15 мкА/см²). 1 – после имплантации; 2 – T=600°C/60 мин; 3 – T = 600°C/60 мин + 1000°C/30 мин.

Рис.16. Профили распределения кобальта в кремнии (D = 3×10^{17} см⁻², E = 180 кэB, j = 15 мкA/см²). 1 – после имплантации; 2 – T=600°C/60 мин; 3 – T = 600°C/60 мин + 1000°C/30 мин.

<u>ВЫВОДЫ:</u> дозы 1,3 х 10¹⁷ не позволяют получить хороший, заглубленный слой дисилицида кобальта

Рис.18. Профили распределения кобальта в кремнии (D = 2×10^{17} см⁻², E = 180 кэB, j = 15 мкA/см²). 1 – после имплантации; 2 – T=1000°C/30 мин

Рис.17. Изображение ПЭМ в "поперечном сечении" образца после отжига 1000°С/30 мин (D=3×10¹⁷ см⁻², J=15 мкА/см², E=180 кэВ).

!!!!! при дозе облучения 2*10¹⁷ ат/см² и последующем отжиге получился заглубленный слой с четкими межфазными границами !!!!!

<u>АНАЛИЗ ДЕФЕКТОВ</u>

Рис.19. Профили дефектов в кремнии для отожженного и не отожженного образцов.

Рис.20. Выход деканалирования на верхней границе.

ДЕФЕКТЫ УПАКОВКИ

Рис.21. Выход деканалирования на нижней границе.

ТОЧЕЧНЫЕ ДЕФЕКТЫ

<u>Выводы</u>: после отжига дефектность слоя уменьшается, на дальней границе раздела дефектов больше, чем на ближней, Со садится в узлы решетки. Типы дефектов в Si(100)отличаются от дефектов в Si(111).

