5.9. Радиохимические и ядерно-физические методы в исследованиях окружающей среды и живых систем.

P.A. Алиев. ramiz.aliev@gmail.com

Работа посвящена производству радионуклидов, использующихся в ядерной медицине и в качестве радиоактивных меток в анализе объектов окружающей среды. Предложены способы получения радионуклидов с высокой линейной передачей энергии, перспективных для радиоиммунотерапии: 67 Ga, 77 Br, 111 In, 211 At и методики получения короткоживущих аналогов тех элементов, которые обладают наиболее высокой радиотоксичностью в долгосрочной перспективе – технеция, селена и стронция. Методики основаны на экстракционном и хроматографическом выделении из мишеней, облученных на циклотроне α -частицами и дейтронами. Галлий-67 ($T_{1/2} = 3,26$ сут) широко применяется в ядерной медицине для диагностики ряда заболеваний, однако он перспективен также и для лечения раковых опухолей. Галлий-67 получали по реакции 65 Cu(α , 2n) 67 Ga, облучая стопку медных фольг толщиной 14 мкм пучком α-частиц энергией 27 МэВ. При использовании меди естественного изотопного состава образуется также значительное количество 66 Ga ($T_{1/2} = 9,49$ ч) по реакции 63 Cu(α,n) 66 Ga и небольшое количество 65 Zn. Наиболее выгодное отношение ⁶⁷Ga/⁶⁶Ga наблюдается ближе к поверхности мишени, в области, где сечение образования ⁶⁷Ga имеет максимум, а ⁶⁶Ga – минимум. Галлий выделяли двумя способами: экстракцией метилизобутилкетоном (МИБК) и ионным обменом. Стронций-85 получали по реакции ⁸⁵Rb(d,2n)⁸⁵Sr. Сульфат рубидия естественного изотопного состава заключали в оболочку из молибденовой фольги (25 мкм) и облучали пучком дейтронов энергией 15 МэВ, при токе до 1,5 мкА. Стронций отделяли на колонке, заполненной сорбентом Sr Resin. Короткоживущие изотопы технеция ^{95m,g}Tc, ⁹⁶Tc применяют как радиоактивные метки при анализе ⁹⁹Tc и при исследовании поведения технеция. Предложен метод одновременного получения трех радионуклидов: 95g Tc ($T_{1/2} = 20$ ч), 95m Tc ($T_{1/2} = 61$ сут) и 96 Tc ($T_{1/2} = 4,35$ сут) из одной мишени, представляющей собой стопку молибденовых фольг естественного изотопного состава, толщиной 25 мкм каждая. Мишень облучали α-частицами энергией 30 МэВ. На рис. 1 показано распределение радионуклидов в молибденовой мишени. Для выделения 96 Тс использовали первую фольгу в стопке, для $^{95\text{m,g}}$ Тс – фольги 3-5, соответствующие диапазону энергий α-частиц 24→11 МэВ. Технеций отделяли от Ru и Мо экстракцией МИБК из 1 М H₂SO₄. При получении ^{95m}Тс и ^{95g}Тс отделение технеция проводили дважды. Сначала отделяли смесь изомеров, потом в водной фазе накапливался короткоживущий изомер за счет распада 95 Ru ($T_{1/2}$ = 1,65 ч), через 6 ч его отделяли повторной экстракцией.

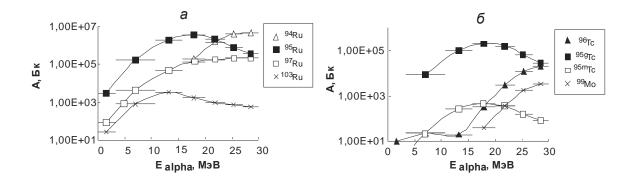


Рис. 1. Распределение изотопов рутения (а), технеция и молибдена (б) в молибденовой мишени в зависимости от энергии пучка. Время облучения 15 мин, ток 1 мкА, для ^{95m,g}Тс активность пересчитана на сутки после конца облучения

Для получения 111 In ($T_{1/2}=2$,8 сут) использовали реакцию 109 Ag(α ,2n) 111 In, поскольку она обеспечивает наиболее чистый продукт. Облучение проводили α -частицами с энергией 30 МэВ, током 1 мкА в течение 2 ч. В результате анализа ядернофизических данных выбраны оптимальное время выдерживания мишени после облучения, равное 24 ч и оптимальная толщина мишени 100 мкм. Расчеты показали, что при этом суммарное содержание побочных продуктов (109 In и 110 In) в облученной мишени составляет не более 27%, а еще через сутки - не более 1%. При толщине 100 мкм теряется только 0,6% продукта по сравнению с толстой мишенью. 111 In экстрагировали 15% раствором ди-2-этилгексилфосфорной кислоты (Д2ЭГФК) в гексане из 3,5 М HNO₃ [3]. Затем 111 In реэкстрагировали 50% НВг, экстрагировали бутилацетатом и реэкстрагировали водой (рис. 5). Эксперименты, проведенные с радиоактивной меткой 110 Ag, показали, что происходит эффективное разделение индия и серебра еще на стадии экстракции Д2ЭГФК. Выход составил около 80%.

В работе принимали участие: Р.А. Алиев, Д.А. Царев, А.Б. Приселкова, В.И. Кузнецов, В.Л. Гируц, В.Н. Меднова, А.Е. Рылова.

Работа отражена в публикациях:

- 1. R.A. Aliev. Production of ^{95g}Tc via ⁹⁵Ru. Radiochim. Acta. 97, 303-307 (**2009**)
- 2. Р.А. Алиев, Д.А. Царев, С.Н. Калмыков, Р.В. Хрестенко. Получение радионуклидов для экологических исследований и радиотерапии. Вестник Моск. Ун-та, серия 2, Химия, **2009**, №5, 402-406.