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11
Ion Beam Neutralization

______________________

   It is more difficult to transport high-current ion beams than electron beams. Nonrelativistic
ions move slower than electrons of equal kinetic energy. Therefore an ion beam has higher
space-charge electric fields than an electron beam of the same current. Also magnetic focusing
by beam-generated fields is ineffective for nonrelativistic beams. We must apply neutralization
to create and to transport high-flux ion beams. The idea is to mix electrons with the ions to
reduce the beam-generated electric field. The process is feasible because of the low mass of the
electron. The mobile electrons rapidly enter the beam volume. Low-energy electrons can follow
high-energy ions to neutralize a beam propagating into free space. Also the technology to
generate electrons is straightforward compared with the complexity of ion sources (Chapter 7). 
   There are two ways to neutralize an ion beam with electrons. First, we can direct the beam
through a dense plasma. The plasma electrons shift in position to compensate for the added
positive charge. Plasma neutralization is an important process for large-area ion extractors that
use a gas-injection plasma source. The beam ionizes gas leaking from the source to produce a
high-density, low-temperature plasma. Although this neutralization method has practical
importance, we shall not address it in this chapter. The characteristics of the plasma depend on
complex collisional processes. Prediction of the plasma properties and residual electric fields
involves applied plasma and atomic physics rather than beam theory.
   In this chapter, we shall concentrate on an alternative approach, vacuum neutralization. Here,
sources located outside the vacuum beam transport region create the electrons. The electrons join
the ions as needed. The resulting neutralized beam has an electron density approximately equal
to the beam density. Collisions with the electrons have little effect on the ion trajectories.
Therefore, beams neutralized by externally-generated electrons can propagate long distances.
   Section 11.1 describes longitudinal neutralization where electrons follow an ion beam entering
a field-free vacuum. There are two options for the generation of collinear electrons. The first is
to accelerate the electrons to the ion velocity by an electric applied field. The second is to allow
the space-charge field of the beam to attract electrons. We shall show that the latter method of
passive neutralization results in an electron distribution with a density and average velocity equal
to that of the ions. Section 11.2 treats a similar process where electrons enter the side of the
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beam in response to space-charge electric fields. This model applies to ion beams in magnetic
quadrupole lenses or bending magnets where the fields prevent the axial motion of electrons.
Section 11.3 describes propagation of an ion beam in a bounded field-free region where
electrons neutralize space charge fields but do not cancel the beam current. This effect can be
useful for flux measurements of neutralized ion beams. 
   One motivation for neutralization is to achieve tightly-focused ion beams. With complete
cancellation of space-charge fields, only emittance limits the focal spot of an intense beam.
Section 11.4 shows that an ideal focus does not occur if the neutralizing electrons have a non-
zero temperature. The electric fields generated by electron thermal motion can reach high values
in a converging beam, defocusing the ions. To conclude the chapter, Section 11.5 reviews the
control of neutralizing electrons with applied magnetic fields to guide and to accelerate ion
beams.

11.1. Neutralization by co-moving electrons

   In this section, we study the propagation of neutralized ion beams in free space with no applied
electric and magnetic fields. Figure 11.1a shows the ideal neutralized beam. The electron and ion
densities are equal so there is no beam-generated electric field. The electrons move at same
velocity as the ions, ve = vi. The conditions of equal densities and equal velocities imply that the
current densities of electrons and ions have equal magnitude but opposite direction. The net
current is zero, so there is no beam-generated magnetic field. If Ti is the ion kinetic energy,
electrons with equal velocity have kinetic energy: 

                                                      Te = mevi
2/2 = (me/mi) Ti.                                                  (11.1)

The electron energy is much smaller than Ti. For example, electrons moving with 1 MeV protons
have Te = 540 eV. The problem we shall address in this section is how to create a neutralized
beam like that of Figure 11.1a. We limit attention to longitudinal neutralization where electrons
enter the transport region at the same location as the ions and travel in the same direction. 
   One option for neutralization is to accelerate electrons to kinetic energy Te and combine them
with the ion beam. This process is called active neutralization. We shall analyze the process with
a one-dimensional model. Figure 11.1b illustrates the geometry. Ions with kinetic energy Ti pass
through a set of grids. A cathode grid acts as an unlimited source of electrons. If the voltage
difference between the grids is 

                                                          Vo = (me/mi)Ti/e,                                                           (11.2) 

electrons reach the anode grid with velocity equal to that of the ions. The electric field between
the grids has a negligible effect on the velocity of energetic ions. Therefore, the ions have
constant density no and velocity (vi = (2Ti/mi)1/2) throughout the acceleration and propagation
regions. 
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Figure 11.1. Ion beam neutralization. a) Ideal neutralized beam -
ions and electrons have equal densities and velocities. b) Active
neutralization - acceleration of electrons to match the density and
velocity of the ion beam.

   Ideal neutralization results if the magnitude of the electron current density at the anode equals
the ion current density, enovi. We are free to choose the spacing between grids to achieve this
condition. Again, we seek a one-dimensional self-consistent equilibrium for electron flow. The
main difference from previous analyses is the inclusion of a uniform ion density. The following
boundary conditions hold for a steady-state solution: 

     1. The electrostatic potential of the cathode (at z = 0) is N(0) = 0. 

     2. The anode at z = d has potential N = Vo = Ti (me/mi)/e. 
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(11.3)

(11.4)

     3. Space-charge-limited electron emission reduces the electric field at the cathode to zero,
dN(0)/dx = 0. 

     4. The electron density equals the ion density at the gap exit, ne(x=d) = no. 

The one-dimensional Poisson equation that satisfies the boundary conditions is 

Following the method of Section 6.4, we can show that the electron current density is given by

where

Because of the ion space-charge, the electron current density is slightly higher than the single-
species Child limit [Eq. (5.48)]. 
   As an example of the characteristics of an electron acceleration gap for ion beam
neutralization, suppose we have a 100 keV deuteron beam with current density 1 × 104 A/m2.
The neutralizing electrons have kinetic energy Te = 27 eV. The acceleration gap must be very
narrow to generate the required electron current-density at low energy, d = 0.22 mm. The
fundamental problem of active neutralization is the creation of high current density electron flux
from a structure that transmits a high-intensity ion beam with little attenuation. Although the
one-dimensional mathematical solution is straightforward, the technological realization is quite
difficult. 
   A more practical way to reduce space-charge forces in an ion beam is through auto-
neutralization. In this process, the space-charge potential of the ion beam accelerates electrons
from a grounded surface. Figure 11.2 illustrates a one-dimensional geometry to describe the
process. An ion beam of infinite transverse extent leaves a planar surface at z = 0. The region z >
0 is a field-free volume. The surface at z = 0 supplies an unlimited electron flux. The
acceleration of electrons by the ion space-charge is a self-limiting process. We recognize that
even a small imbalance of charge in an intense ion beam results in a high value of space-charge
potential, N o (me/mi)Ti/e. If the electron density is less than that of the ion beam, the resulting
electric fields draw more electrons into the beam. An equilibrium occurs when electrons move 



Ion beam neutralization Charged Particle Beams

505

Figure 11.2. Hypothetical desired conditions for ion beam neutralization through
space-charge acceleration of electrons.

into the propagation region at the same rate as the ions. 
   Figure 11.2 illustrates the desired equilibrium solution for auto-neutralization. The space-
charge fields accelerate electrons in a thin sheath to match the velocity of the ions. We assume
that the sheath occupies the region 0 # z # d. Several conditions constrain the solution of the
Poisson equation: 

     1. The voltage drop across the sheath equals (me/mi)Ti/e. 

     2. The electron current density at z = d equals the ion current density, je = jo = enovi.

     3. The electric field at z = 0 must equal zero because the electron flow is space-charge
limited, dN(0)/dz = 0. 

     4. The electric field at the sheath exit equals the field inside the propagating beam because
there is no charge layer at d. By the assumption of a neutralized beam, dN(d)/dz = 0. 

There are too many boundary conditions for a solution of the Poisson equation. In order to have
zero electric field at both sides of the sheath, the potential must follow an S-shaped curve with
both positive and negative inflection. The dual inflection occurs only if the ion density exceeds
the electron density near z = d and the electron density is larger near z = 0. Condition 2 implies
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(11.5)

(11.6)

(11.9)

(11.10)

that the electron and ion densities are equal at z = d; furthermore, we know that ne ~ 1/N1/2 in
steady-state. The implication is that the electron density is higher than the ion density
everywhere in the sheath. 
   We must seek solutions with different boundary conditions to explain how auto-neutralization
works. One possibility is to look for a steady-state solution where variations of the potential are
not contained to a sheath but extend to infinity. For any potential variation, the electron density
has the form: 

We retain the condition of uniform ion density no and current density jo. To ensure that the
electron and ion fluxes are equal, the constant A in Eq. (11.5) has the value (jo/e)(2eVo/me). In the
region z $ 0, the Poisson equation is: 

We can simplify Eq. (11.6) by defining the dimensionless variables:

                                                               M = N/Vo.                                                                 (11.7)

                                                         Z = z/(Vo,o/eno)1/2.                                                          (11.8)

The reduced Poisson equation is:

   If emission of electrons from the surface at Z = 0 is space-charge limited, the boundary
conditions for the solution of Eq. (11.9) are M(0) = 0 and dM'(0)/dZ = 0. A dual integration of the
equation leads to the solution: 

Figure 11.3 illustrates the spatial variation of M(Z). The potential is periodic with values between
M = 0 and M = 4. The distance from the cathode to the first potential maximum is Z = (2)1/2B.
The electrons over-neutralize and under-neutralize the beam. The electron velocity varies 
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Figure 11.3. Ion beam neutralization by space-charge acceleration of electrons.
Steady-state solution when a uniform ion beam occupies the entire region Z > 0.
M = N/Vo, Z = z/(Vo,o/eno)1/2.

between ve = 0 and ve = 2vi. 
   We might conclude from the solution of Eq. (11.10) that effective auto-neutralization is
impossible. To explain experimental observations, we recognize that the derivation proceeds
from two questionable conditions: 

      1) The model assumes that an equilibrium state exists in the full half plane z > 0 for all times.
It ignores processes that may occur as ions and electrons fill the propagation region. 

     2) The model takes electron motion as purely one-dimensional. The electrons have a delta-
function distribution in longitudinal energy. 

Regarding the second assumption, we recognize that neutralization is a disordering process
where electrons join with ions to form a homogeneous mixture. If we limit motion to one
dimension, we may have set an artificial constraint that prevents the electron distribution from
attaining thermodynamic equilibrium. 

   We shall develop a model to show that there are alternative equilibrium solutions that give
auto-neutralization with a well-defined sheath region. We include time-dependent processes as
an ion beam fills the vacuum propagation region z $ 0. The uniform density beam enters the
region at t = 0 and moves in the z direction at velocity vi. We resolve the problem of inconsistent
boundary conditions by introducing the possibility of low-energy electrons in the propagating
beam. These electrons reflect from the moving ion front –  Figure 11.4 illustrates the process. If 
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Figure 11.4. Time-dependent solution for ion beam neutralization by the space-charge acceleration of
electrons. a) Geometry, showing electrons reflected by a virtual cathode at the moving ion front. b)
Variation of electrostatic potential with z: eNo = (me/mi)Ti. c) Spatial variation of densities of ions (ni),
entering electrons (ne) and reflected electrons (ner).

the potential across the sheath exceeds the voltage Vo, electrons enter the beam with velocity
higher than vi. The electrons try to run ahead of the ion front, but the unbalanced space-charge
creates a virtual cathode. Electrons reflected from the moving virtual cathode have reduced
kinetic energy.
   Suppose that the voltage drop across the sheath equals 4Vo – electrons enter the beam with
velocity 2vi. Applying conservation of momentum, we find that an electron loses all its kinetic
energy when reflected from the moving beam front. As a result, the electron distribution in the
propagating beam has two components: stationary reflected electrons and a uniform density of
newly injected electrons moving at 2vi. Conservation of flux implies that the moving ion front
deposits stationary electrons at the same rate as electrons exit the acceleration sheath. Therefore,
the density of stationary electrons ns equals the density of injected electrons at the sheath exit
ne(d). In a neutralized beam, the densities are:

                                                               ns = ne(d) = no/2.                                                    (11.11)
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   By including stationary electrons in the beam, we can solve the Poisson equation in the
electron acceleration sheath. The following boundary conditions define the solution:

                                                                 1)   N(0) = 0.                                                         (11.12)

                                                               2)   N(d) = 4Vo.                                                       (11.13)

                                                             3)   dN(0)/dz = 0.                                                      (11.14)

                                                             4)   dN(d)/dz = 0.                                                      (11.15)

                                                               5)   ne(d) = no/2.                                                      (11.16)

Equation (11.16) implies that the density of electrons near the exit of the sheath is lower than the
ion density. By Eq. (11.5), the electron density is higher near the cathode grid. Therefore, it is
possible to generate a solution for N that follows an S-shaped curve. The solution of the Poisson
equation with conditions (11.12) through (11.16) is identical to Eq. (11.10) in the sheath region,
0 # z # d. The sheath width is

                                                              d = B (2Vo,o/eno)1/2.                                                 (11.17)

In the region z > d the additional low-energy electrons give a solution with constant potential, N
= 4Vo, rather than the oscillatory solution of Figure 11.3. The electric field is confined to the
sheath. The propagating beam is field-free. In the beam volume, the net electron density equals
no while the average electron velocity equals vi. Figure 11.4 shows a plot of electron density and
potential over the sheath and beam.
   The modified sheath solution gives an electron distribution in the beam with two discrete
velocity components at ve = 0 and ve = 2vi. In the beam rest frame, the electron components
stream through each other with velocity ±vi. Such a distribution is potentially unstable to the
two-stream instability (Section 14.1). This instability randomizes the axial velocity distribution.
We can find the actual electron distribution that results from auto-neutralization from a one-
dimensional computer simulation. Figure 11.5 shows results from a computer program that uses
the dimensionless variables of Eqs. (11.7) and (11.8). The figure gives electron phase-space
distributions in terms of the dimensionless electron velocity V = ve(z)/vi.  Figure 11.5a shows a
distribution at early time when the ion beam has moved only a few sheath widths. The spatial
variation of electron velocity closely follows the prediction of Eq. (11.10). As predicted, the
peak potential of 4Vo occurs at a distance Z = (2)1/2B from the source. The solution has an
oscillatory component of potential similar to that of Figure 11.3. Some reflected electrons appear
as negative velocity particles. 
   Figure 11.5b shows the electron distribution at a later time with the ion beam front at Z = 9.
There is considerable activity near the injection point, but the downstream electrons have settled
into an equilibrium with small variations of potential. The average beam potential is Vo and the
average electron velocity equals vi. Thermalization of the electron distribution results from the 
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Figure 11.5. Particle-in-cell computer
simulation of one-dimensional auto-
neutralization. A uniform-density ion beam
with a sharp front moves into a field-free
region. Ion kinetic energy: Ti, ion velocity: vi,
ion beam density: no. Vo = (me/mi)Ti, Z =
z/(,oVo/eno)1/2. a) Axial phase-space plot of the
electron distribution with the ion front at Z =
15. b) Axial phase space plot of the electron
distribution with the ion front at Z = 40. c)
Relative electron velocity distribution,
averaged over the spatial region marked by the
thick line in part (b).

two-stream instability. Figure 11.5c plots the electron velocity distribution averaged over the
downstream region of Figure 11.5b. The computer simulation illustrates the main difference
between auto-neutralization and ideal active neutralization. For the auto-neutralization solution,
the electrons have a velocity spread of about )ve = 0.6vi (full-width at half-maximum). 
   We can use Eq. (11.17) to find the electron acceleration sheath width. Again, suppose we have
a 100 keV deuteron beam with density 104 A/m2 – the predicted sheath width is 1.2 mm. This
width is much smaller than the width of a high-current ion beam; therefore, the one-dimensional 
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Figure 11.6. Schematic drawing of the transverse neutralization process.

sheath model is a good representation. In many intense ion beam experiments neutralizing
electrons are generated when the beam passes through a conducting grid or foil. A localized
plasma sheet can also supply electrons for auto-neutralization.

11.2. Transverse neutralization

   Figure 11.6 shows the geometry for transverse neutralization of an ion beam. The beam passes
between conducting boundaries that act as electron sources. The space-charge electric field of
the ions pulls electrons from the boundaries. Ideally, the electrons cancel electric fields in the
beam. The main differences from the models of Section 11.1 are that the ions propagate through
a bounded region and that the electrons need not move with the ion beam. By studying
transverse neutralization, we can understand how electrons merge with ion beams in more
complex geometries. 
   The geometry of Figure 11.6 is a good representation of the transport region near a
magnetically-insulated ion diode (Section 8.8). The diode magnetic field penetrates into the
transport region, inhibiting axial propagation of neutralizing electrons. The electrons can flow
only along the magnetic field lines. In a vacuum, the only way to neutralize an intense ion beam
is to supply electrons on all magnetic field lines that the beam crosses. Electrons generated on
the surfaces shown in Figure 11.6 flow into the beam. For intense ion beam diodes with pulse
lengths less than 0.1 :s, we must study the response time for this process to determine the
success of transverse neutralization. 
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(11.19)

(11.20)

(11.21)

(11.22)

   We shall take an approach similar to that of Section 11.1. We start with a simple equilibrium
model that has reasonable assumptions but leads to non-physical results. By analyzing the
limitations of the model, we can gain insight into how neutralization occurs in a real system.
Finally, to get an accurate description of the disordered collective process we turn to computer
simulations. For the simplified one-dimensional model, suppose that an ion beam moves in the z
direction through a field-free region between two conducting walls at x = ±d/2. The walls can
supply a space-charge-limited electron flux. We assume that the maximum space-charge
potential energy is much smaller than the ion kinetic energy, eN n Ti. Therefore, we shall
concentrate on the electron motion. For simplicity, we let the ions fill the space between the
boundaries with a uniform density no.
   For one-dimensional motion the density of electrons is inversely proportional to their velocity
in the x direction. The density is related to the electrostatic potential by

                                                           ne = A/N1/2.                                                                 (11.18)

We define the wall potential as N(±d/2) = 0. For space-charge-limited electron emission, the wall
electric field equals zero, dN(±d/2)/dx = 0. The electric field also equals zero on the symmetry
axis, dN(0)/dx = 0. We can write the Poisson equation for a space-charge equilibrium as: 

We define the quantity No as the potential at the midpoint between the boundaries, N(0) = No.      
The first integral of Eq. (11.19) is:

Equation (11.20) satisfies the boundary conditions if A = noNo
1/2/2. Substituting for A and

introducing dimensionless variables M = N/No, X = x/xo, Eq. (11.20) becomes:

Equation (11.21) has the multiple solutions:
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Figure 11.7. Spatial variations of electrostatic potential for transverse
neutralization with ideal one-dimensional electron motion and an ion density
constant over all time.

The maximum electrostatic potential, M = 1, occurs at the midplane X = 0. In physical units, the
midplane potential is:

                                                     No = enod2/2B2,o(2m+1)2.                                                 (11.23)

where m = 0,1,2,.... The maximum potential from a uniform-density ion beam without
neutralizing electrons is enod2/8,o. We define a space-charge potential reduction factor:

                                               No/[enod2/8,o] = 4/B2(2m+1)2.                                                (11.24)

Figure 11.7 shows the spatial variation of potential of neutralized and unneutralized beams for
different values of m. 
   One problem with the model is that it does not predict a unique equilibrium state. We expect
that a unique set of initial conditions should give a unique final state. We can choose any value
of m – the model does not show whether neutralization is effective. For m = 0 the reduction
factor equals 0.405. This reduction is useless for intense ion beam transport where the electric
fields must be less than a factor of 10-6 of the unneutralized value. 
   The simplified model is unrealistic for two reasons. First, it takes electron motion as perfectly
one-dimensional. In consequence conservation of energy implies that an electron that leaves one
boundary reaches the other boundary with zero velocity. Therefore the density of reflexing
electrons diverges at the boundaries. For the m = 0 solution electrons spend most of the time near
the boundaries and move quickly through the midplane. As a result the ion beam is over-
neutralized at the boundary and under-neutralized at the midplane. Another problem with the 
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Figure 11.8. Particle-in-cell computer simulation of transverse
neutralization. a) Simulation geometry –  the ion density increases
with time between grounded conducting electron emitters. The figure
shows an electron orbit deflected by a skewed magnetic field. b)
Simulation results - time-variation of electrostatic potential on the
midplane. Dashed line shows variation of ion density with peak
value no = 1018 m-3. Quantities 0.4No and N(0)max described in text.
Curve A: magnetic field inclination angle: 0° - one-dimensional
electron motion. Curve B: magnetic field inclination angle: 15°.
(Courtesy, J. Poukey, Sandia National Laboratories).

model is that the monoenergetic electron distribution is valid only if the ion density is constant at
all times. For a pulsed beam the ion density and the associated space-charge fields change with
time. Therefore, electrons emitted early in the pulse have different orbit properties than those
that enter at late times.
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   Transverse neutralization is effective if electrons in the beam volume do not return to the
boundary. If electrons are trapped in the beam volume, then additional electrons can enter from
the boundaries until space-charge fields are completely canceled. Relaxing the constraint of one-
dimensional motion allows electron trapping. If an electron suffers a deflection normal to the x
direction (Figure 11.8a), conservation of energy implies that it cannot return to the boundaries. A
temporal variation of space-charge fields also traps electrons. A rising ion density pulls electrons
away from the boundary.
   A computer simulation is the best approach to model complex electron orbits. We shall review
results from a particle-in-cell simulation for the geometry of Figure 11.8a. Electrons leave
conducting boundaries with a space-charge-limited flux. The boundaries and ion density have
infinite extent in the z direction. The ion density is also uniform in the x direction. The
simulation model has two main differences from the simple equilibrium model:

     1) The ion density rises with time to an equilibrium value.

     2) A transverse magnetic field in the transport region influences the electron orbits. When the
magnetic field points along x the electrons have purely one-dimensional orbits as before. On the
other hand, tipping the field direction (Figure 11.8a) results in electron velocity components in
the y and z directions. 

The skewed magnetic field is an easy way to introduce the effect of geometric variations into the
one-dimensional code.
   Figure 11.8b shows results of the simulation. The graph plots the electrostatic potential at the
midplane No as a function of time. The boundaries are at positions d = ±0.005 m, the ion density
rises to a final value no = 1018 m-3 with a rise time )tr = 0.5 ns. The dashed line in Figure 11.8b
shows the variation of ion density. For the given parameters, the equilibrium model predicts a
potential No = [0.405enod2/8,o] = 91 kV for m = 0. Curve A of the figure corresponds to a
calculation where the magnetic field lies in the x direction. The reduced potential results from
the time dependence of space-charge fields. The final potential is lower than the equilibrium
model prediction by about a factor of two. Curve B is the result of a simulation with deflected
electron orbits – the magnetic field has an inclination of 15°. This small change in geometry
results in a dramatic difference in the nature of the solution. After the ion density reaches
equilibrium, the potential rapidly drops almost to zero. (The residual potential oscillations at late
time result from the finite number of particles in the simulation.) The simulation implies that in
real systems with asymmetries, transverse electron neutralization rapidly cancels space-charge
electric fields.
   Because of their low mass, electrons respond rapidly to changes in the density of an ion beam.
Nonetheless, the variation of ion density in pulsed ion diodes is so rapid that the electron
response time can result in high values of space-charge potential. The simulation results (Figure
11.8b) show that a non-zero space-charge potential is necessary to draw electrons into the beam
volume during the rise of ion density. We can estimate the required potential for the geometry of
Figure 11.9. A sheet ion beam of width ±xb and velocity vi enters a region between electron-
emitting plates separated by distance ±d. At a given axial location, the ion density varies as:
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Figure 11.9. Geometry to estimate the peak electrostatic potential in an
ion beam with rising density neutralized by the transverse flow of
electrons.

(11.26)

(11.27)

                                                              ni(t) = no(t/)tr),                                                       (11.25)

for t # )tr, and ni(t) = no for t > )tr. When vi)tr o d the space-charge electric fields lie
predominantly in the x direction. 
   A transverse magnetic field prevents electron motion in the z direction. We can estimate the
electrostatic potential during the ion density rise by invoking global charge balance in a section
of the transport system of length )z. During the rise of ion density, the beam potential must be
high enough to pull electrons across the vacuum region from the walls. We assume that field
asymmetries are strong enough to trap electrons in the beam; therefore, electrons enter
continually from the wall. Finally, we assume that neutralization is effective so that the global
integrals of electron and ion densities over the volume element 2d)z)y are almost equal, or

Equation (11.26) holds when the space-charge potential is much smaller than that of an
unneutralized beam.
    The integral of the time variation of ion density over the volume element of Fig. 11.9 equals: 
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(11.28)

(11.30)

If the current density of electrons leaving each boundary is je and if the beam traps the electrons,
the rate of change of the integrated electron density is approximately:

If No represents the average electrostatic potential of the beam, the electron current density scales
as:

                                            je # (4,o/9) (2e/me)1/2 No
3/2/d2.                                                    (11.29)

The inequality depends on the fraction of the transport region filled by the ion beam. Combining
Eqs. (11.26) through (11.29) gives the following expression for the beam potential during the ion
density rise: 

   When applied to the parameters of the simulation of Figure 11.8 (where the ion beam fills the
transport region), Eq. (11.30) overestimates the potential by about a factor of 2.5. The dashed
line in the figure shows the estimate. As an application example consider a neutralized ion beam
accelerator (Section 11.5). A Na+ beam has current density 50 × 104 A/m2, kinetic energy 20
MeV, and ion density no = 2.4 x 1017 m-3. The beam has width xb = 0.02 m and propagates
between boundaries at d = A0.04 m. With a beam density risetime of 50 ns, the predicted
midplane electrostatic potential is No #30 kV. The transverse electric fields associated with the
residual potential can result in beam defocusing, limiting the utility of high-current ion diodes
and accelerators. 

11.3. Current neutralization under vacuum

   When a high-current ion beam moves into an infinite field-free volume, accompanying
electrons provide both space-charge neutralization and current neutralization. We can show that
a high-flux ion beam is also current-neutralized if it crosses a finite length region from a source
to an electrically-isolated target. Without electron flow, the beam would induce a large voltage
drop between the target and source. As an example, suppose a focused ion beam charges a
spherical target of radius 0.1 m. The beam has 10 A current and a 1 MeV kinetic energy. If the
distance between target and the source is 0.3 m, the inter-electrode capacitance is about C = 10-12

F. The voltage difference is )V – Ii)t/C, where )t is the beam pulse length. The deposited
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Figure 11.10. Current neutralization of ion beams by electron
flow in vacuum. a) Intense ion beam focused to an inertial fusion
target. b) Ion beam in a closed pipe neutralized by the axial flow
of electrons.

charge creates a potential equal to the beam kinetic energy in about 1 :s. On the other hand, the 

voltage to accelerate an equal current of electrons is only about 500 V. We expect that if
electrons are available at the source electrode, they will flow to the target with the ion beam to
cancel the space-charge potential. Figure 11.10a shows the elements of a one-dimensional auto-
neutralization solution for an ion beam crossing to an isolated target. The net current to the target
is zero if it has potential is +eVo.
   The current of an intense ion beam is not canceled completely when the beam moves through a
vacuum region surrounded by conducting boundaries. To describe time variations of the electron
current, we shall use the idealized geometry of Figure 11.10b. A cylindrical beam of ions with
kinetic energy Ti travels through a pipe of radius rw and length d with conducting walls at each
end. The beam has current Ii, radius ro and velocity vi – (2Ti/mi)1/2. The source plane can supply
an electron flux equal to the beam current density. For current neutralization, the electrons must
have kinetic energy; on the other hand, stationary electrons could provide space-charge
neutralization. In the static field limit there are no electric fields to give electrons a directed
energy because the surrounding walls are all grounded. At late time (compared with the ion



Ion beam neutralization Charged Particle Beams

519

transit time d/vi), we expect that the neutralizing electrons are stationary. Inside the pipe there are
no electric fields but there are magnetic fields created by the ion beam current.
   Processes are more interesting at early times because the changing magnetic flux inside the
pipe can create an axial electric field to accelerate neutralizing electrons. During the initial
transit of the beam front through the pipe, electrons follow the beam with velocity vi. In this
phase, the electron distribution is determined by the auto-neutralization process described in
Section 11.2. When the beam contacts the downstream wall the flow of neutralizing electrons
continues. If the electron flow were to stop immediately, the toroidal magnetic field of the beam
would appear instantaneously, creating an infinite electric field. Therefore, the electron flow
must decrease gradually. For current neutralization to persist, a continuous flow of electrons
from the entrance wall must accelerate to kinetic energy Teo = (me/mi)Ti. Changing magnetic flux
inside the pipe supplies the accelerating voltage. The small fractional deceleration of ions in the
electron acceleration sheath at the entrance wall contributes energy to create the magnetic field.
The inductive voltage results from a changing net current. Because the ion current density is
constant the electron current must decay.
   We can construct a simple model for the decay of neutralizing electron current with the
following assumptions:

     1. The ion beam current rises rapidly. During the initial ion transit through the pipe, the
electron current equals the ion current. At time t = 0 when the beam fills the pipe, the net current
equals zero. If Ie(t) is the net electron current, then Ie(0) = -Ii.

     2. Electrons accelerate in a narrow sheath at the entrance wall. We denote the average
electron kinetic energy at t = 0 as Te(0) = Teo.

     3. The beam radius is much smaller than the pipe radius, ro n rw. As a result, the magnetic
field energy from a net chamber current is concentrated in the volume outside the beam. To first
order, the inductive voltage acts uniformly on all electrons.

     4. The ion and electron densities ni and ne are uniform over the beam radius. 

     5. The space-charge of the high-intensity ion beam is always neutralized. Thus, the electron
density always equals the ion density, ne – ni.

   The ion current Ii is constant following injection, while the magnitude of the electron current
Ie(t) decreases in time. The net current is I(t) = Ii - Ie(t). The chamber has an inductance L
roughly equal to:

                                                      L = (:o/2B) d ln(rw/ro).                                                   (11.31)

The voltage between the entrance and exit walls is:

                                                            V = L (dI/dt).                                                            (11.32)
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(11.35)

(11.40)

Because the electron and ion densities are always equal, the ratio of ion to electron current is
proportional to the ratio of the average particle velocities:

                                                             Ie/Ii = ve/vi.                                                                (11.33)

where ve(t) = (2Te(t)/me)1/2. We can rewrite Eq. (11.33) as:

                                                          I = Ii  (1 - ve/vi).                                                           (11.34)

   The electrons gain their velocity in a narrow sheath at the entrance wall. With this condition,
Eq. (11.34) becomes

We can combine Eqs. (11.32) and (11.35) into a single equation for the time-variation of total
current:

                                                L (dI/dt) = (Teo/e)[1 - (I/Ii)]2.                                                (11.36)

In terms of the dimensionless variables,

                                                           J = t/(eLIi/Teo),                                                           (11.37)

and

                                                                 3 = I/Ii,                                                                  (11.38)

Equation (11.36) becomes:

                                                           d3/dJ = (1 - 3)2.                                                          (11.39)

With the initial condition that 3 = 0 at J = 0, the solution of Eq. (11.39) is:

Figure 11.11 plots the result of Eq. (11.40). The net current rises to a significant level over the
dimensionless interval J = 1. At late time the total current approaches the ion current. As
expected, stationary electrons provide long-term space-charge neutralization. 
   In most experiments with pulsed high-current ion beams in bounded chambers the fractional
decay of electron current is small. For example, suppose we have a high-flux beam of 500 keV 
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Figure 11.11. Variation of the net current for a neutralized ion beam inside a closed pipe. a) Geometry of
the calculation. b) Variation of total current I as a function of time. Ii equals the constant injected ion
current, J equals t/(eLIi/Teo), and L equals (:o/2B)d ln(rw/ro).

protons with ji = 100 x 104 A/m2, and ro = 0.05 m. The beam travels through a drift chamber of
length d = 1 m  and radius rw = 0.15 m. The total beam current is Ii = 7.9 kA, the chamber
inductance is L – 2.2 x 10-7 H, and the average electron energy for current neutralization is Teo =
271 eV. Inserting the values in Eq. (11.37), the characteristic current decay time is J = LIie/Teo =
6.4 :s. The quantity J is much longer than pulselengths typical of many experiments (#0.1 :s).
   By adjusting the propagation chamber inductance and the beam width, we can achieve
conditions where J is much shorter than the beam pulselength. In this limit we can use small
propagation chambers for measurements of the current density of energetic, neutralized ion
beams. Figure 11.12 shows the geometry of a detector. It consists of a bounded cylindrical
chamber with a Rogowski loop [CPA, Section 9.14] to measure the net axial current. Ions enter
through a foil with thickness less than the ion range. Besides acting as an electron source, the foil
provides discrimination against low-energy ions. Each ion in the beam creates several secondary
electrons on the inner surface of the foil. We can design the chamber geometry for a rapid decay
of electron current. For example, with d = 0.01 m, ro = 0.002 m and rw = 0.015 m, the chamber
inductance is only L = 4 x 10-9 H. For a beam of 500 keV protons with ji = 100 x 104 A/m2, the
decay time is J = LIie/Te – 0.2 ns. As a result, the detector has good time resolution. We can find
the ion current density by dividing the net chamber current by the area of the entranced aperture.
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Figure 11.12. A detector to measure the current density of an energetic, high-current ion beam
neutralized by electrons. (Courtesy, J. Greenly, Cornell University).

11.4. Focal limits for neutralized ion beams

   One motivation to neutralize an ion beam is to focus it to a small spot size. Recent
neutralization studies have concentrated on intense ion beam transport to small inertial fusion
targets. In Section 5.4, we saw that space-charge forces interfere with focusing. In this section,
we shall study processes that limit focusing of neutralized beams in vacuum. Although the focal
spot size for a neutralized beam is smaller than that for a bare beam, we shall see that collective
effects may present limitations for some applications.
   Figure 11.13 shows a pulsed neutralized beam crossing a vacuum region to a target. A current
of electrons equal to the ion current enters the beam at the entrance. The electrons almost
eliminate electric fields in the beam. Nonetheless, there is a small transverse electric field if the
electrons have non-zero transverse temperature, kTe. Sections 11.1 and 11.2 showed that both the
longitudinal and transverse neutralization processes lead to thermal electron distributions. As a
first step in the calculation of ion trajectories in a neutralized beam, we shall estimated the
magnitude of the thermally-generated fields.
   We take an ion beam with cylindrical symmetry — changes in the beam dimension take place
over axial distances much larger than the beam radius. The radial variation of high-energy ions is
a given function:

                                                                 ni(r) = nio f(r).                                                      (11.41)

The quantity nio is the ion density on axis and f(r) is a normalized function that equals unity at r
= 0 and drops to zero at large radius. We assume that the electron transverse velocity distribution 
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Figure 11.13. Coordinate system to analyze propagation of a
pulsed neutralized ion beam to an inertial fusion target in a
spherical reactor. 

(11.43)

viewed in the beam rest frame is close to a Maxwell distribution with uniform temperature kTe.
Section 2.11 showed that the electron density is related to the electrostatic potential by:

                                                           ne(r) = neo exp[eN(r)/kTe].                                         (11.42)

With the choice N(0) = 0, the quantity neo is the electron density on axis. Although Eq. (11.42)
applies only to beams in equilibrium, it is useful to estimate the electron density when the ion
beam changes slowly compared with the average electron transit time over the beam-width.
   When a neutralized ion beam propagates in free space, the net beam current is zero. The line
charges of ions and electron have equal magnitude, or:

When the neutralizing electrons are cold the radial distributions of electrons and ions are
identical. On the other hand the density profile of hot electrons may extend radially outside the
ion distribution. We can calculate the variation of electron density by substituting Eqs. (11.41)
and (11.42) in the cylindrical Poisson equation:



Ion beam neutralization Charged Particle Beams

524

(11.44)

We can identify the scaling parameters by rewriting Eq. (11.44) in terms of the following
dimensionless variables:

                                                             M = eN/kTe,                                                              (11.45)

                                                 R = r/(kTe,o/e2neo)1/2 = r/8d,                                                  (11.46)

where 8d is the Debye length [Eq. (6.13)]. The reduced form of Eq. (11.44) is:

where Nio = nio/neo. Inspection of Eq. (11.47) shows that M changes significantly over a scale
length R ~ 1. 
   We can solve Eq. (11.47) numerically by an integration from the axis to large radius. We
initiate the calculation with the starting conditions M(0) = 0, dM(0)/dR = 0 and an assumed value
of Nio. Equation (11.43) and Gauss's law imply that the radial electric field outside the beam
equals zero. If the choice of Nio is correct, dM/dR approaches 0 at infinite radius. Figure 11.14
illustrates two solutions. In the first (Figure 11.14a), the ion density is uniform between the axis
and a sharp edge. In the second solution (Figure 11.14b), the ion density drops smoothly to zero.
In both case the transverse temperature pushes electrons outside the ion distribution. The ion
density exceeds the electron density near the axis. As a result, there is a positive radial electric
field. The equilibrium solution represents a balance between the radial electric force and the
gradient of the electron pressure. 
   For an ion beam with a well-defined boundary, the electric field is concentrated within a few
Debye lengths of the edge. The peak electric field roughly equals:

                                                                    Er ~ kTe/8d e.                                                     (11.48)

For the smooth beam profile, charge separation occurs over the fill width of the beam. The radial
variation of electric field is almost linear.
   We can use Eq. (11.48) to estimate the effects of electron temperature on neutralized ion beam
focusing. Figure 11.13 shows the geometry of the calculation. Ions enter a spherical chamber and
travel through vacuum to a small target. At the entrance point, the ions draw electrons from a
source. Following Section 11.1 we expect that the entering electrons have a small but non-zero
temperature kTeo. Near the entrance, electric fields resulting from electron temperature are small
and have a negligible effect on the ion orbits. On the other hand electric fields resulting from
electron temperature can be very strong near the target. In a short neutralized ion beam the 
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Figure 11.14. Spatial variations of normalized particle density and radial electric field for a cylindrical
ion beam neutralized by hot electrons with temperature Te. 8d = (kTe,o/e2neo)1/2. a) Uniform density ion
beam with a sharp boundary. b) Ion beam with a gradual density decrease to zero.

volume occupied by electrons shrinks substantially as the beam moves toward a focus.
Compression of the electrons raises their temperature.
   We shall use an envelope equation to describe propagation of a neutralized ion beam. The
process of neutralized beam focusing is complex – our model illustrates the application of
approximations and the limitations they introduce. The main assumption is that the length of the
ion beam pulse is much shorter than the distance from the injection point to the target. As a
result, the ions and electrons form a closed system during propagation. Given the initial electron
distribution we can estimate the final properties by applying the principle of phase volume
conservation (Section 3.8). If the beam is not isolated, an exchange of hot electrons in the beam
for cold electrons from the vacuum chamber or target can take place. This process is much more
involved so that we must turn to computer simulations for predictions. 
   We take the electron distribution at injection as isotropic with temperature kTeo. As the beam
travels to the focal point, the electrons compress radially. As a result, the electron temperature
varies with the axial position of the beam, Te(z) $ Teo. We can describe the compression of
electrons in two special cases:
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(11.50)

     1) For an ideal radial compression, the transverse energy of electrons increases while the
thermal energy in the axial direction remains constant. We apply the theory of Section 3.8 for a
two-dimensional compression.

     2) If the beam compression is non-uniform in the z direction, some of the transverse energy
gain converts to an axial velocity spread. If there is strong coupling between axial and transverse
motion, the electron velocity distribution remains isotropic. Here, the beam undergoes a two-
dimensional compression with energy shared between three degrees of freedom.

The final electron distribution of a real beam is likely to have properties intermediate between
the predictions of the two limiting cases.
   The solutions of Eq. (11.47) imply that the radial electric field at the beam roughly equals:

                                                         Er(z) – 0 (kTe(z)/e8d).                                                  (11.49)

The quantity Te(z) is the transverse electron temperature and 0 is a scaling parameter with a
value near 0.5. The Debye length of electrons in the beam changes with propagation distance
according to

For a radial compression, the electron density is related to the envelope radius R by

                                                      ne(z) = neo [Ro/R(z)]1/2.                                                     (11.51)

To construct an envelope equation, we need an expression for the transverse temperature as a
function of the beam radius. To begin, consider an ideal two-dimensional compression. From
Section 3.8,

                                                       kTe(z) = kTeo (Ro/R)2.                                                     (11.52)

Substitution of Eq. (11.52) in (11.50) shows that the Debye length is constant during
propagation, 8d(z) = 8do.  For the parameters of inertial fusion beams, the Debye length near the
focal point often exceeds the beam radius. Therefore, the radial electric fields are close to those
of an unneutralized beam near the target.
   Combining Eqs. (11.49), (11.50), (11.51) and (11.52) leads to the following expression for the
envelope electric field as a function of radius:

                                                 Er(R) – (0kTeo/e8do) (Ro/R)2.                                                (11.53)
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(11.55)

(11.56)

(11.58)

The envelope equation for a nonrelativistic ion beam with zero emittance in a field-free region is

                                                 R" = [0kTeoRo
2/mivi

28do]/R2.                                                  (11.54)

We can integrate Eq. (11.54) from the target at z = 0 back to the injection point at z = -L. Assume
that the beam has a waist at the target so that R(0) = Rmin and R'(0) = 0. At the injection point 
R(-L) = Ro and R'(-L) = -2o. The quantity 2o is the envelope injection angle, 2o – Ro/L. We find
that:

The quantity vi is the axial ion velocity. If we drop the term 1/R(z) in brackets, Eq. (11.55) leads
to a relationship for the minimum beam spot size:

The quantity Ti is the ion kinetic energy mivi
2/2.

   We find a different result from Eq. (11.56) if the electron energy growth is uniform in three
dimensions. Conservation of phase volume (Section 3.8) implies that:

                                                        kTe(z) = kTeo (Ro/R)4/3.                                                   (11.57)
   
Using Eq. (11.57) in place of Eq. (11.52), the predicted focal spot size is:

   We can illustrate the implications of Eqs. (11.56) and (11.58) for beam parameters in a
conceptual heavy ion fusion reactor. Suppose that multiple beams of 10 GeV U+ ions irradiate a
target. Each beam radius is Ro = 0.06 m while the propagation distance is L = 10 m. The beam
length of 0.9 m is shorter than the propagation length. Neutralizing electrons with the same
velocity as the ions have a kinetic energy of 23 keV. Following the discussion of Section 11.1
we assume an initial electron temperature of kTeo – 10 keV. The initial density of ions and
neutralizing electrons is neo = 3.1 x 1016 m-3. The initial Debye length, 8do – 4.2 mm, is much
smaller than the beam radius. Inserting the parameters into Eq. (11.56) with 0 = 0.5 gives a spot
size prediction of Rmin = 12 mm for an ideal two-dimensional compression. If the thermal energy
is equal in three dimensions, the spot size from Eq. (11.58) is Rmin = 5.3 mm. In both cases the
predicted radius is larger than a fusion target. Therefore, the problem of thermally-generated



Ion beam neutralization Charged Particle Beams

528

electric fields warrants detailed study. Our simplified model may over-estimate the electric fields
near the target. When the beam contacts the target, hot electrons may exchange with cold
electrons from the target surface, short-circuiting the transverse electric fields.

11.5. Acceleration and transport of neutralized ion beams

   Neutralized ion beams can carry high power densities – beam currents may exceed 1 kA. Such
beams present special problems for acceleration and transport. It is essential to maintain a close
balance between ion and electron density throughout the acceleration process. In this section we
shall discuss methods to guide neutralized beams and to increase their kinetic energy.
Conventional methods of beam focusing, such as electrostatic lenses or quadrupole magnets, are
ineffective. The fields in these devices strongly deflect electrons and may interfere with
neutralization of the ion beam. Here, we shall concentrate on alternative focusing methods based
on collective effects. High-density ion beams cannot propagate without neutralizing electrons.
By inducing small electron displacements we can generate large space-charge electric fields that
can guide energetic ions.
   Figure 11.15a shows a simple example of electron control for a high-intensity ion beam. A
neutralized beam enters a vacuum region through a grounded grid. The entering ion and electron
fluxes are exactly equal. The ion beam has non-zero emittance – we represent the spread in
velocity by a transverse temperature kTi. The region has an applied solenoidal magnetic field Bo.
Although the field is too weak to affect the orbits of energetic ions directly, it is strong enough to
confine the low-energy neutralizing electrons. In the propagation region the ions expand while
the electrons are confined to a cylindrical volume. The resulting charge separation creates radial
electric fields that can focus the ions.
   Exact solutions for the electrostatic potential in the electrostatic sheath at the edge of the beam
depend on details of the ion distribution. Here we shall make a rough estimate of the sheath
dimension from scaling arguments. A strong magnetic field bonds electrons to field lines. In the
strong field limit electrostatic effects determine the sheath width. If the ions have a Maxwell
distribution in transverse velocity, we can apply the results of Section 6.2 to find the sheath
width. The width is close to an ion Debye length:

                                                              8E ~ (kTi,o/e2ni)1/2 .                                                 (11.59)

In Equation (11.59) ni is the density of the entering ion beam and the subscript E denotes the
sheath width from electrostatic effects. 
   With a weak magnetic field electron confinement in the presence of space-charge electric
fields determines the sheath width. We can apply results from Section 8.1. We want to find the
size of orbits for electrons in a magnetic field Bo subject to a voltage of about Vo ~ kTi/e. From
Eq. (8.11) the magnetic sheath width is roughly

                                                            8M ~  (2kTime)1/2/eBo.                                                 (11.60)
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Figure 11.15. Transport of high-intensity neutralized ion beams by the control of electrons. a) Weak
solenoidal magnetic field confines electrons, while the space-charge electric field confines ions. b)
Multipole magnetic fields concentrated at the boundary confine neutralizing electrons.

Figure 11.16 shows plots of the electric and magnetic sheath dimensions as functions of kTi, ni
and Bo. The condition 8M o 8E defines the weak magnetic field regime. In an intermediate regime
the expansion width for the ions equals the larger of 8E and 8M. 
   As an example suppose we have a neutralized beam of C+ ions with current density ji = 1 × 104

A/m2, kinetic energy 2 MeV, and density ni = 1.1 × 1016 m-3. The beam has an angular
divergence of 0.5° corresponding to a transverse temperature of kTi = 150 eV. Equation (11.59)
predicts that the electrostatic sheath width is only 0.87 mm. To ensure that 8M < 8E, the magnetic
field should be Bo > 0.048 tesla. The results show that low magnetic fields can confine energetic
ion beams through charge-separation effects.
   The system of Figure 11.15a is impractical for high-flux beams because of the entrance mesh.
Also extraction of the neutralized ion beam from the magnetic field is difficult. Figure 11.15b
shows an alternative geometry for collective ion beam transport. The applied magnetic field is a
cusp array (Section 10.9). Magnetic windings with alternate polarity or permanent magnets line
the wall of the transport chamber. The axial length of cells is smaller than the coil radius. The
resulting cusp field is concentrated at the wall and is small on the axis. Although the weak
magnetic fields have little effect on the ions, they strongly focus the neutralizing electrons. The
radial electric fields generated by charge separation confine the ions. The cusp array has
advantages over the solenoid: 1) the minimum-B field provides stable confinement of the low-
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Figure 11.16. Sheaths for electron control of intense neutralized ion beam transport -
dimensions in cm. 8M, the scale length for magnetic confinement of electrons, depends on
Bo (kG) and Ti (eV). 8E, the scale length for electostatic confinement of ions, depends on
Ti (eV) and ni (cm-3). 

energy electrons, 2) the neutralized ion beam emerges from and travels to field-free regions.      
The space-charge lens is another option for collective focusing of neutralized ion beams. In
contrast to the cusp transport system, the space-charge lens is an isolated solenoid lens with
linear radial forces that focus a neutralized ion beam toward a point. To analyze its effect we
shall use of the geometry of Figure 11.17. An ideal neutralized beam enters a weak solenoid
lens. The ions and electrons of the incident beam have only axial velocity. The density and
velocity of the electrons exactly equals that of the ions. The magnetic field of the lens has little
effect on the energetic ions – without space-charge electric fields single ions would pass through
with little deflection. On the other hand the converging magnetic field lines exert a radial force
on the electrons. Compression of the electron distribution creates electric fields that point toward
the axis.
   To calculate electric fields in the space-charge lens we must find a self-consistent beam
equilibrium. For a first order treatment, we neglect changes in the ion density and consider a
long solenoidal field. All electrons have zero canonical angular momentum and equal total
energy:

                                                                   Te = Ti(me/mi).                                                    (11.61)

The constraints on the electron distribution are similar to those we used to calculate the Brillouin 
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Figure 10.17. Geometry of the space-charge lens.

equilibrium – we can apply the results of Section 10.3. The main difference is the presence of the
ions. In the theory of Section 10.3 the charge density no represented a bare electron beam. In the
space-charge lens the negative charge density arises from an excess of electrons near the axis.
We shall denote the negative charge enhancement as )n. For a high-current neutralized beam,
we expect that 

                                                                     )n n ni, ne.                                                       (11.62)

   Section 10.3 showed that )n is uniform in radius in a self-consistent electron equilibrium.
Equation 10.33 implies that the charge imbalance has magnitude 

                                                        )n = (eBo/2me)2 (2,ome/e2).                                           (11.63)

From Eq. (5.26) the resulting radial electric field is

                                                              Er = - (Tgo
2me/4e) r.                                                 (11.64)

The electric field of Eq. (11.64) combined with the centrifugal force balances the focusing force
of the magnetic field so that the neutralizing electrons pass through the lens with small change in
radius. The electric field varies linearly with r – the field from the perturbed electrons is
independent of the radial variation of ion beam density when the fractional charge imbalance is
small. 
   The space-charge electric force on nonrelativistic ions is much larger than the direct magnetic
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force. Within the solenoid lens, the electric force is: 

                                                        Fe = - me (eBo/2me)2 r.                                                  (11.65)

Equation 9.25 implies that the magnetic force is

                                                        Fm = - mi (eBo/2mi)2 r.                                                   (11.66)

The ratio of forces is:

                                                              Fe/Fi = (mi/me).                                                        (11.67)

Equation (11.67) shows that the focusing effect from space separation is over a thousand times
stronger than the direct action of the magnetic field. 
   The space-charge lens has the apparent ability to focus intense ion beams with modest
magnetic fields. Unfortunately further analysis shows that a linear force variation is possible
only in a restricted parameter regime, limiting applications to low-current ion beams. One
restriction is that the magnetic field cannot be so strong that it reflects entering electrons. We
discussed this process in Section 10.1. Equation 10.11 gives a constraint on the maximum radius
of a neutralized beam: 

                                                               rb < 2mevi/eBo.                                                        (11.68)

To illustrate the implication of Eq. (11.68) suppose we have a 10 MeV C+ beam with velocity vi
= 1.26 × 107 m/s. For a beam radius of 0.02 m, the equation implies that Bo < 7.2 x 10-3 tesla. A
neutralized beam can penetrate through a lens with higher applied magnetic field by creating
axial space-charge fields that pull electrons through the lens. Although the beam crosses the lens,
the associated spread in electron total energy violates the conditions of the model and the radial
electric field is non-linear.
   With a limit on applied magnetic field we can investigate the constraints imposed by the
condition of small fractional change in electron density, Eq. (11.62). From Eq. (11.63) the ratio
of the electron density perturbation to the density in the undisturbed beam is

                                                  )n/ne = (eBo/2me)2 (2,o me/e2ne) n 1.                                  (11.69)

We can rewrite Eq. (11.69) in a form that shows the limit on the ion beam current,

                                                          I n (B/2) (eBo
2,ovi/me) rb

2.                                           (11.70)

Inserting parameters for the carbon ion beam with Bo = 5 x 10-3 tesla and rb = 0.02 m, we find
that I n 0.31. The implication is that space-charge lenses have linear focusing strength only for
low-current ion beams.
   To conclude this section, we discuss methods to accelerate neutralized ion beams. The 
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Figure 11.18. Methods to accelerate high-current neutralized ion beams.
a) Low gradient, large-area injector. Biased grids prevent streaming of
electrons into the acceleration gaps. b) Radial magnetic field acceleration
gap. The magnetic field inhibits electron streaming.
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challenge in a neutralized beam accelerator is control of electrons in the presence of strong axial
electric fields. The electrons cannot cross acceleration gaps with the ions. The neutralizing
electrons must be removed from the ion beam at the entrance to a gap and replaced at the
downstream side. Also the drift regions between acceleration gaps must be electrically isolated
from the gaps. Accelerating electric fields that penetrate into the drift regions would pull
electrons from the neutralized beam and accelerate them backward. Electron loss wastes energy
and prevents effective neutralization between gaps. Figure 11.18a shows an accelerator for a
high-current ion beam that uses grids for electrical isolation of the acceleration gaps. The gap
electric field penetrates into the drift region a small distance comparable to the spacing between
grid wires. Electron loss is small if the beam in the drift region has a positive potential relative to
the grid. In the drift region electrons mix with the ion beam through the transverse neutralization
process described in Section 11.2. A beam with a long pulse length traps a distribution of
stationary electrons in the drift spaces between narrow acceleration gaps. Shaped grids create
transverse components of electric field to focus the ions. The grid accelerator has the
disadvantages of ion loss on the grids and degradation of beam emittance by facet lens effects.
Nonetheless the device can create high-perveance beams of moderate kinetic energy (~1 MV)
and current density (~1 × 104 A/m2). 
   The radial magnetic field acceleration gap of Figure 11.18b allows acceleration of high-flux
neutralized beams. In contrast to the grid accelerator the radial field gap has no physical
structure to intercept the beam. Transverse magnetic fields prevent electron flow across the
acceleration gaps. The radial field gap is similar to the magnetically insulated gap of Section 8.8
– a pre-accelerated beam replaces the ion source. By conservation of canonical angular
momentum the magnetic fields do not contribute a net azimuthal velocity to accelerated ions. For
long-pulse beams electrons trapped in the acceleration gap allow enhanced ion flux (Section
8.9). Multiple gap radial field accelerators have generated 3 kA pulsed C+ beams at 600 keV.
Observed current densities of 30 × 104 A/m2 are well beyond conventional space-charge limits.


