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Abstract

Within the Born approximation the loss function is the important material property for describing the inelastic inter-

action of charged particles with the extended electronic subsystem of condensed media. Following the dielectric

approach as elaborated by Ritchie and co-workers we determine the loss function of liquid water by a two-step process:

(i) an optical energy-loss model is deduced by an analytic representation of the available data at the long wavelength

limit, and (ii) the momentum dependence is introduced by simple dispersion models which provide characteristic fea-

tures of the Bethe surface. By this semi-empirical procedure many-body effects such as polarization, correlation and

collective excitations, which are still impractical to compute, are accounted for in a self-consistent manner. Effects

on the Bethe surface characteristics of liquid water associated with the choice of the optical-data model and its exten-

sion to the momentum plane are explored.
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1. Introduction

The inelastic interaction of charged particles
with the extended electronic subsystem of con-
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densed media is best described by the dielectric

function properties of the medium, as first shown

by Lindhard, Hubbard and Ritchie in the 1950s.
The dielectric formalism was subsequently applied

by Fano to various penetration phenomena in

solids extending Bethe�s stopping theory [1]. At

the heart of this formalism is the generalization

of the dielectric constant of a medium, e, to

a complex dielectric function, e(x, K) = e1(x, K)
+ ie2(x, K), where E ¼ �hx and q ¼ �hK are the

energy- and momentum-transfer, respectively (we
ed.
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refer to the isotropic and homogeneous case where

K is scalar). This generalization accounts for the

absorption (E-dependence) and scattering (q-

dependence) properties of the medium to external

perturbations. In particular, the imaginary part
of the inverse dielectric function:

Im
�1

eðE; qÞ

� �
¼ e2ðE; qÞ

e21ðE; qÞ þ e22ðE; qÞ
¼ Im½eðE; qÞ�

jeðE; qÞj2

ð1Þ
plays a central role in the slowing-down process

and is called the energy-loss function or simply

the loss function (LF) of the material. Its three-

dimensional representation in the E–q plane defines

the material�s Bethe surface. In fact, whereas the

numerator in Eq. (1) corresponds to the standard
single-particle transitions of an atom or molecule

in the gas phase, the denominator accounts for

the influence of the condensed phase. That is, the

polarization of the medium by the charged particle

field is represented by a screening (jej > 1) or a col-

lective anti-screening effect (jej < 1), whereas at

high enough frequencies the limit jej � 1, typical

of the gas phase, is approached. Within the first
Born approximation, the LF directly determines

the doubly-differential cross-section of non-relativ-

istic particles:

d2k�1ðT ;E; qÞ
dEdq

¼ 1

pa0Tq
Im

�1

eðE; qÞ

� �
; ð2Þ

where k�1 is the inelastic inverse mean-free-path,

a0 the Bohr radius, and T = mv2/2 with m the elec-

tron rest mass and v the particle velocity. Various

integrals of the LF are also associated with impor-

tant transport parameters by means of

M ðnÞðT Þ ¼ 1

pa0T

Z
En dE

Z
1

q
Im

�1

eðE; qÞ

� �
dq; ð3Þ

where for n = 0, 1, 2, the inelastic mean-free-path,

the electronic stopping-power and the straggling

parameter, respectively, are obtained.

Therefore, efforts have been made to develop

accurate and computationally tractable algorithms

for the evaluation of the LF to be used for realistic

Monte Carlo simulation of particle transport in

condensed matter [2], as well as for a first-principle
calculation of electronic stopping-powers below
Bethe�s cut-off [3]. In the present work, we provide

(i) an analytic parametrization of the recent Inelas-

tic X-ray Scattering Spectroscopy (IXSS) data at

q = 0 [4] for liquid water by means of our pre-

viously developed optical-data model (ODM),
and (ii) a detailed evaluation of the energy-momen-

tum variation of LF of liquid water, by use of our

ODM and several dispersion algorithms, and a

comparison of the model LF against the IXXS data

in the range 0.69 6 q 6 3.59 a.u. [5].
2. Methodology

2.1. The dielectric function formalism

In principle, the LF may be obtained on the ba-
sis of the microscopic system�s Hamiltonian since

it is directly associated to the electronic degrees

of freedom. Thus, formally, the LF is proportional

to the dynamic-structure-factor (or the inelastic

form-factor), S(q, E), by means of

Im
�1

eðE; qÞ

� �
¼ p

2Z

E2
p

RðKa0Þ2
SðE; qÞ; ð4aÞ

SðE; qÞ ¼
X
f

f
XZ
j¼1

expðiKrjÞ
�����

�����i
* +�����

�����
2

; ð4bÞ

where Ep is the (nominal) plasma energy, Z is the

number of electrons with rj the coordinates of

the jth electron and jii, jfi are the initial and final
state wave-functions, respectively. Calculations by

means of Eqs. (4a) and (4b), however, are still

impractical for condensed media due to the strong

many-body character. Although significant ad-

vances have been made for ground-state calcula-

tions, excited electronic states, which are of

interest here, still present a daunting task [6]. On

the other hand, the LF may also be obtained by
macroscopic methods, e.g. by various spectro-

scopic techniques (EELS, IXSS), whereas its long

wavelength limit may be obtained by optical mea-

surements. This association of the LF with obser-

vable quantities has been a key factor for the

widespread application of the dielectric formalism,

as elaborated by the Oak Ridge group (Ritchie,
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Ashley and co-workers) [7]. Their methodology is

particularly suitable for non-free-electron-like

materials, such as liquid water. It is a two-step pro-

cess where one starts with an analytic representa-

tion of the experimental data at the optical limit
and then introduces the momentum dependence

by a simple dispersion algorithm. This is an eco-

nomic, yet consistent method for obtaining the

LF with only a minimum of computational effort.

Moreover, the only input required are optical data

which are available for many materials, whereas

its experimental origin accounts, by default, for

many-body effects such as polarization, correlation
and collective excitations, which are still impracti-

cal to compute.
2.2. Optical-data models

An optical-data model (ODM) refers to an ana-

lytic representation of the experimental data at

long wavelengths (K � 1) of the imaginary part
of either e or �1/e. An ODM provides, therefore,

the dependence of the inelastic probability on en-

ergy loss at the optical limit (q = 0) (see Eq. (2))

and, as a corollary, a model of the optical region

of the Bethe surface. The 30-year old optical mea-

surements at Oak-Ridge [8] have provided the

basis for all studies conducted so far for liquid

water [9, and references therein]. Based on these
data we have previously constructed anODMusing

a linear superposition ofmodified-Drude functions,

which improved earlier models [10]. An important

shortcoming of these data, however, was the lim-

ited energy range covered (up to 25 eV) which

was not sufficient to exhaust the influence of con-

densation (i.e. jej5 1). Also, the somewhat con-

spicuously large peak at about the plasmon
energy of liquid water (21–22 eV) had raised con-

cerns on the existence of a strong collective excita-

tion [11]. The new IXSS data [4,5] (i) extend to

much higher energies (�200 eV), and (ii) provide,

for the first time, evidence for the q-dependence

of the LF. The analytic parametrization of the

new data followed the previous methodology [10]

where the Drude-model constants for the various
single-electron transitions were used as adjustable

parameters.
2.3. Dispersion models

A dispersion model provides a scheme for

incorporating the q-dependence on Im(�1/e) and,
thus, guides the construction of the Bethe surface
along the momentum plane. The latter is still un-

known for realistic materials and, consequently,

no definite method exists for modeling the q-

dependence. This state of affair has led to various

heuristic approaches, which are basically meant to

account for the most important features of the

Bethe surface, such as, for example, the develop-

ment of the Bethe ridge. For free-electron-like
materials, Lindhard�s or (Mermin�s) dielectric

function provides the basis for the q-dependence

[12]. Their suitability, however, for the single-elec-

tron valence-shell transitions of liquid water (and

other organic materials) is questionable [13]. In

previous studies we have implemented various dis-

persion models to our ODM, such as, the d-oscil-
lator schemes of Ashley and Liljequist, and
Ritchie�s extended-Drude schemes, and calculated

electron [3,10] and proton [14] inelastic character-

istics for liquid water. A brief description of the

resultant model LFs follows.

2.3.1. d-oscillator models

Following [12], the optical-oscillator-strength

density of an atom may be represented by the fol-
lowing relationship:

df ðE; 0Þ
dE

¼
X
j

fjdðE � EjÞ; ð5Þ

where j denotes a particular transition. The d-func-
tion in Eq. (5) may be called an optical-oscillator.

This idea may be used to extend the optical func-

tion to q > 0 by substituting Ej with a dispersion
function Gj(q) such as Gj(0) = Ej. By using the rela-

tionship between the oscillator-strength and the

loss function,

df ðE; qÞ
dE

¼ 2Z
p

E

E2
p

Im
�1

eðE; qÞ

� �
; ð6Þ

Eq. (5) may be appropriately generalized to

E Im
�1

eðE; qÞ

� �
¼

Z 1

0

E0Im
�1

eðE0; 0Þ

� �
dðE � GðE0; qÞÞdE0:

ð7Þ
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The d-function may now be called the d-oscillator.
Ashley [15] has provided the following dispersion

to be used in the d-oscillator of Eq. (7):

GðE0; qÞ ¼ E0 þ q2=2m: ð8Þ
It resembles the plasmon dispersion of the free-

electron gas at low-q, while asymptotically leading

to the Bethe ridge at high-q. By inserting Eq. (8)
into Eq. (7), the following LF formula is obtained:

Im
�1

eðE; qÞ

� �
¼

Z 1

0

E0Im
�1

eðE0; 0Þ

� �
dðE � ðE0 þ q2=2mÞÞ

E
dE0:

ð9Þ
Eq. (9) essentially amounts to a quadratic exten-

sion into the E–q plane.

Liljequist [16] has suggested a dispersion

scheme based on Bohr�s distinction between reso-

nant-like and binary-like collisions. The former

correspond to the optical region of the Bethe sur-

face, whereas the latter define the Bethe ridge. The
following dispersion scheme was suggested:

GðE0; qÞ ¼ E0 for q2=2m 6 E0;

GðE0; qÞ ¼ q2=2m for q2=2m > E0:
ð10Þ

By inserting Eq. (10) in Eq. (7) the following LF

formula is obtained:

Im
�1

eðE; qÞ

� �

¼
Z 1

0

E0Im
�1

eðE0; 0Þ

� �
dðE � E0Þ

E
HðE0 � q2=2mÞdE0

þ
Z 1

0

E0Im
�1

eðE0; 0Þ

� �
dðE � q2=2mÞ

E
Hðq2=2m� E0ÞdE0:

ð11Þ
Eq. (11) may be simplified to

Im
�1

eðE; qÞ

� �
¼ Im

�1

eðE; 0Þ

� �
HðE � q2=2mÞ

þ E2
p

p
2

ZeffðqÞ
Z

dðE � q2=2mÞ
E

; ð12Þ

where Zeff(q) is the effective number of target elec-
trons which participate in collisions with energy

transfer up to q2/2m, as obtained from the relevant

sum-rule. Note that in Eq. (12) the extension to the

momentum plane is practically obtained by simply

extending part of the optical loss function to finite

momentum values (E > q2/2m region) and by
placing delta functions along the Bethe ridge; the

latter corresponds to the E < q2/2m region.
2.3.2. Extended-Drude schemes

Given a Drude-type representation of the opti-
cal spectrum, Ritchie [17] has suggested that the

q-dependence may be incorporated in the (empiri-

cal) model parameters by a substitution of the type

{fj, cj, Ej}! {fj(q), cj(q), Ej(q)}; the simplest one is

the use of the triad {fj, cj, Ej(q)}, where Ej(q) is

given by the impulse-approximation:

EjðqÞ ¼ Ejð0Þ þ q2=2m: ð13Þ
To avoid the unrealistic free-electron-like disper-

sion of the discrete transitions one may restrict

Eq. (13) to the continuum i.e. Ej(q) ! Ej,cont.(q),

and subsequently adopt an empirically-derived

GOS for the free-molecule, i.e. the use of the triad
{fj(q), cj, Ej(q)}. An analytic function of the gen-

eral form:

f ðjÞ
excðqÞ ¼ f ðjÞ

excð0Þ
X
n

aðjÞn qn expð�bðjÞn qÞ ð14Þ

has been adopted by Ritchie and co-workers [7] for

the discrete transitions. By means of the f-sum rule

the corresponding q-dependence of the continuum

may be obtained:

f ðjÞ
ionizðqÞ ¼ f ðjÞ

ionizð0Þ
1�

P
jf

ðjÞ
excðqÞ

1�
P

jf
ðjÞ
excð0Þ

: ð15Þ

Although the generalised-oscillator-strength of the

liquid will, obviously, bear a q-dependence that

will be different from the one of the free molecule,

the above approximation provides a more reason-

able q-dependence for the discrete than the one
provided by Eq. (13). Moreover, phase differences

are expected to be more important at q = 0 (where

the liquid absorption spectrum has been used),

gradually vanishing at large q.
3. Results and discussion

In Figs. 1(a) and (b) we compare the dielectric

functions as obtained by our ODMs against the

two sets of experimental data in the region from

threshold to 50 eV where condensed phase effects
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are most pronounced. Although not shown, the

ODMs account for all individual single-electron

valence transitions of water (eight discrete excita-

tions and four ionization shells). The parametriza-

tion of the new ODM may be provided by the
authors upon request. The representation of both

sets of data is very good, especially with respect

to the optical loss function, Im[�1/e(E, 0)], which
is the key material property. Although not shown,

this agreement extends up to the highest experi-

mental data point (�200 eV for the IXSS data).

Interestingly, a comparison between the two

ODMs at the 21 eV region reveals that the new
Im[�1/e(E, 0)] is by a factor of 1.5 lower, whereas
Fig. 1. The dielectric response functions of liquid water at the

optical limit – full-curves: our optical-data models; boxes: (a)

reflectance data [8], (b) IXSS data [4].
the new Re[e] is by a factor of 2 higher. Thus, the

new optical data further support the hypothesis

that the 21 eV peak, though of some collective

character, is not due to a plasmon excitation.

The ODMs satisfy the sum-rules to within 0.5–
1.5%, whereas an I-value between 80 and 85 eV

is obtained depending on the ODM used. The

I-values are slightly higher than the ICRUI-value

for liquid water (75 ± 3 eV) [18], but in better

agreement with more recent experiments

(79.7 ± 0.5 eV) [19] and calculations (81.8 eV) [20].

The influence of the ODM on the dispersion

characteristics is examined in Figs. 2(a) and (b).
The LFs predicted by the two ODMs (using the

extended-Drude dispersion in both) are compared

as a function of the energy transfer (Fig. 2(a)) and

momentum transfer (Fig. 2(b)) for several values

of q and E, respectively. The new ODM predicts

(i) an energy loss spectrum skewed towards higher

losses, which further supports the idea of strong

inter-molecular perturbation effects in the liquid
phase by contrast to the vapor (this effect gradu-

ally vanishes though at q > 0), and (ii) a much

broader momentum distribution, which is indica-

tive of stronger intra-molecular binding effects.

The three-dimensional profile of the LF in the

E–q plane, i.e. the Bethe surface of the material,

is examined in the subsequent figures. In Fig.

3(a) the Bethe surface of liquid water as deter-
mined by the IXSS data which cover the range

0.69 6 q 6 3.59 a.u. [5] is shown. Model calcula-

tions of the Bethe surface of liquid water are de-

picted in Figs. 3(b) and (c). In particular, in Fig.

3(b) we have calculated the energy–momentum

variation of the loss function by means of the

ODM established from the reflectance data of [8]

and the extended-Drude model. The calculations
of Fig. 3(c), on the other hand, make use of the

ODM established from the IXSS data of [4]; while

the dispersion is the same as in Fig. 3(b). The

Bethe surface model of Fig. 3(b) has been adopted

in our MC code for charged particle transport cal-

culations in liquid water [9] and has also been

used, with some variation, in the OREC (Oak

Ridge) [21] and PARTRAC (GSF) [22] MC codes.
In agreement with an earlier study [23], the semi-

empirical Bethe surface based on ODMs and the

extended-Drude dispersion is in fair agreement



Fig. 2. The loss function of liquid water as a function of (a) the energy transfer and (b) the momentum transfer. Full-line: based on the

optical-data model established from the reflectance data of [8]; broken-line: based on the optical-data model established from the IXSS

data of [4]. The extended-Drude dispersion model is used for both calculations.
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with the experimental Bethe surface as far as the

global characteristics are concerned. This provides

some confidence on the overall reliability of the

approximations used in the model dielectric func-
tions. Although not shown, the Bethe surface ob-

tained by the plasmon-like d-oscillator model

exhibits very similar characteristics; especially with

respect to the development of the Bethe ridge. In

contrast, the d-oscillator model using the simpli-

fied resonant-binary distinction provides the crud-

est approximation of the Bethe surface with

practically most of its loss function concentrated
along a delta-like Bethe ridge.

Further insight upon the above issue is pro-

vided in Figs. 4(a) and (b), where the difference be-

tween the model LF and the experimental LF is

depicted as a surface in the energy–momentum

plane. The model calculation in panel (a) is as in

Fig. 3(b), whereas, in panel (b) as in Fig. 3(c). De-

spite the fact that the experimental Bethe surface,
as shown in Fig. 3(a), appears to also evolve in a

quadratic-like mode, it is much broader in shape

than the model calculations since there is a pro-

nounced positive surface difference all along the

Bethe ridge in both Figs. 4(a) and (b). That is,

the free-electron limit is approached much faster
by the dispersion model which underestimates

binding effects at finite momentum values. By

comparing the two panels of Fig. 4 it is apparent

that the choice of the ODM adopted has an impor-
tant effect even in the region of finite momentum;

in particular, the use of the reflectance data of

[8], which form the basis for all dielectric calcula-

tions made so far for liquid water, leads to sub-

stantially higher surface difference throughout

the entire energy–momentum plane.

The heuristic, though physically plausible, nat-

ure of the various dispersion models and the lack
of any experimental verification had always been

the main point of criticism in the application of

the dielectric methodology to liquid water (and

other non-free-electron-like materials). In the

light of the recent data on the near complete

optical spectrum of the valence shells of liquid

water, as well as on the momentum dependence

of its dielectric functions, the present study
showed that, despite their internal consistency,

the dielectric models used so far for liquid water

may need some refinement with respect to their

dispersion characteristics, while care should be

taken to accurately reproduce the data at the

optical limit.



Fig. 3. The Bethe surface of liquid water: (a) experimental IXSS data from [4,5], (b) calculations using the optical-data model

established from the reflectance data of [8] and the extended-Drude dispersion, (c) calculations using the optical-data model established

from the IXSS data of [4] and the extended-Drude dispersion.

Fig. 4. The difference between the calculated loss function and the experimental loss function obtained from [5]: (a) the model loss

function of Fig. 3(b) has been used, (b) the model loss function of Fig. 3(c) has been used.
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