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Abstract

We present a new method describing the time development of the internal state of fast highly charged ions subject to

collisions and to spontaneous radiative decay during transport through solids. Our method describes both the build-up

of coherences and the decoherence of the open quantum system due to the interaction with its environment. The

dynamics of the reduced density matrix is governed by a Lindblad master equation that can be solved by Monte Carlo

sampling techniques. In practice, the standard Lindblad equation can be of limited value because it describes strictly

unitary time transformations of the reduced density matrix. We have developed a generalized non-unitary Lindblad

form (and its Monte Carlo implementation) for the evolution in finite subspaces in which the coupling to the comple-

ment is taken into account. We use the radiative decay of a free hydrogenic atom in vacuum as a simple test case. We

present an application for Kr35+ ions traversing carbon foils with varying thickness and compare our results with

experiments.
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1. Introduction

The open quantum system (OQS) approach in

atomic physics provides a useful theoretical frame-

work describing the time evolution of atomic elec-
tronic states interacting with a large environment.

The passage of an ion through solids provides an
ed.
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example of the interaction of an OQS (the internal

state of the ion) with a large environment (the solid

and the electromagnetic field).

Difficulties in calculating the time evolution of

OQSs have their source in the high dimensionality
of the problem. Approximate solutions are com-

monly accomplished by transforming the governing

master equation for the reduced density matrix of

the system of interest to a Lindblad form [1–4],

which can be solved using a quantum trajectory

Monte Carlo (QTMC) method [1,2,5]. Depending

on the physical system to be described the reduction

to the Lindblad form is not unique and is still an
open problem. We have recently introduced a for-

malism for this reduction that accounts for both

the build-up of coherences and decoherence of

internal states of the ion during its passage through

a solid [5]. We applied our approach to the trans-

mission of Kr35+ ions through carbon foils. Dif-

ferences between theory and experiments were

observed for thick foils. In this work we present
an extension of our previous formalism which can

account for previously observed discrepancies.

One of the major features of the Lindblad for-

malism is the unitarity of the evolution of the explic-

itly described system. This feature is of limited value

when dealing with a high dimensional state space

typical for atomic collisions in solids. For exam-

ple, during the transmission the ion is excited to
high- lying states including the continuum (ioniza-

tion), which cannot be completely represented with-

in any realistic basis size. From this point of view it

seems desirable to find a new approach that de-

scribes not only the dynamics within a finite Hilbert

space but also the flow of probability to its comple-

ment (which is not explicitly represented). Specifi-

cally, the goal is to treat explicitly the low-lying
states of the ion while implicitly accounting for

the flow of probability towards highly excited

bound states and continuum states in the comple-

ment. This is the purpose of this work. Atomic units

will be used unless otherwise stated.
2. Unitary open quantum system approach

In this section we briefly review our previous

formalism (a more detailed description can be
found in [5]). Consider a system of interest with

Hamiltonian HS interacting with a reservoir HR

through an interaction VSR. The time evolution

of the density matrix q(t) of the entire interacting

system is given by the Liouville–von Neumann
equation, dq(t)/dt = �i[HS + HR + VSR,q(t)]. Since
the calculation of the time evolution of the entire

system is out of reach for interacting systems with

a large number of degrees of freedom, a simpler

OQS approach is usually adopted. Within this for-

malism, a master equation is derived for the density

matrix of the system of interest by tracing out all

degrees of freedom of the reservoir, i.e. r(t) =
TrR[q(t)]. In our previous work [5] a Lindblad mas-

ter equation dr(t)/dt = �i[HS,r(t)] + Rr(t) with

RrðtÞ ¼ � 1

2V

X
~k

Syð~kÞSð~kÞ;rðtÞ
h i

þ

�

�2Sð~kÞrðtÞSyð~kÞ
�

ð1Þ

was adopted, where R represents a relaxation

operator describing the interaction of the system

with the reservoir involving a sum containing the

transition operator Sð~kÞ representing transitions

between states of S due to the coupling with the

reservoir determined by VSR. Details of Sð~kÞ will
be discussed below. We solve the Lindblad equa-

tion by a QTMC method by evaluating r(t) as

an average over quantum trajectories jWg(t)i,

rðtÞ ¼ 1

N traj

XN traj

g¼1

WgðtÞihWgðtÞj j; ð2Þ

with the number of quantum trajectories Ntraj con-

trolling the statistical uncertainty and g labeling

different stochastic realizations. jWg(t)i is obtained
by jWg(t)i = Ug(t, 0)jW(0)i, where the time evolu-

tion operator Ug(t, 0) is constructed as a product

of continuous time evolution operators and dis-

continuous jump operators as

U g
contðt; tnÞ

Yn

j¼1
U g

jumpð~kj; tjÞU g
contðtj; tj�1Þ:

U g
jumpð~kj; tjÞ is directly proportional to Sð~kjÞ while

U g
contðtj; tj�1Þ / exp½�iH effðtj � tj�1Þ�, with the non-

Hermitian effective Hamiltonian

H eff ¼ HS �
i

2
C ¼ HS �

i

2V

X
~k

Syð~kÞSð~kÞ: ð3Þ
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The jump times tj and the parameters ~kj are

chosen at random such that the Monte Carlo solu-

tion (2) converges to the solution of the original

Lindblad equation (1) in the limit of an infinite

number of realizations.
3. Non-unitary extension

Eq. (1) corresponds to a unitary mapping of the

Hilbert space onto itself preserving positive defi-

niteness. One of its virtues is that dTrS[r(t)]/
dt = 0. For realistic high-dimensional systems
which include continuum states, this virtue is of

limited value. Only a subspace P of the Hilbert

space HS can be represented in a numerical simu-

lation by a truncated basis. The subspace P is

coupled to its complement Q by VSR. The flow

of probability from P into Q is therefore not an

artifact but real for any computationally feasible

truncated basis set. The point to be noted is that
Q refers to a subspace of the system Hilbert space,

not to the environment. It is therefore an accept-

able approximation to account for a flow from P

into Q while neglecting the back coupling from

Q to P. The consequence is the violation of unita-

rity within P � HS .

Suppose that one would like to lift the restric-

tion dTrS[r(t)]/dt = 0 and to develop a new master
equation that accounts for the probability flow

from P into Q in an OQS. The most natural exten-

sion consists of a �generalized� Lindblad equation

in which we replace the relaxation superoperator

by

RrðtÞ ¼ � 1

2V

X
~k

PPSyð~kÞSð~kÞPP; rðtÞ
h i

þ

�

� 2SPð~kÞrðtÞSPyð~kÞ
�
; ð4Þ

where S is defined in the entire Hilbert space HS

while SP is the submatrix of S mapping P onto it-

self. That is, SP ¼ PPSPP, where PP ¼
P

a2Pjaihaj
is the projector operator onto the subspace P. This

gives rise to the decomposition

CPP ¼ 1

V

X
~k

SPyð~kÞSPð~kÞ ¼ 1

V

X
~k

CPPð~kÞ; ð5Þ
CP ¼ 1

V

X
~k

PPSyð~kÞSð~kÞPP ¼ 1

V

X
~k

CPð~kÞ; ð6Þ

where the former (Eq. (5)) describes decay within

P while the latter (Eq. (6)) also includes decay

from P to Q. In other words, (6) involves the

submatrix SPQð~kÞ mapping P onto Q. In the
QTMC algorithm the generalized jump operator

using SPð~kjÞ remains unchanged while the continu-

ous flow operator becomes

WgðtjÞ
�� �

¼ Wgðtj�1Þ
�� ��e�iHP

eff
ðtj�tj�1ÞjWgðtj�1Þi

� e�iHPP
eff

ðtj�tj�1Þ Wgðtj�1Þ
�� ���� ����1

: ð7Þ

In Eq. (7) the norm of the wavefunction is not

preserved in contrast to the operators used in the

standard Monte Carlo method for solving the
Lindblad equation. The non-hermitian effective

Hamiltonians are HP
eff ¼ HS � i

2
CP and HPP

eff ¼
HS � i

2
CPP.
4. Application to radiative decay

In this section we test our new approach for a
problem that can be solved exactly: the multilevel

time evolution of an excited hydrogenic ion subject

to spontaneous radiative decay. Subsequently, we

proceed to apply our method to the more challeng-

ing case of an ion in a collisional environment.

Consider a highly charged hydrogenic ion,

Kr35+, in vacuum. Since radiative decay is an exo-

thermic process, the Hilbert spaceHS necessary for
a full representation of all possible states is finite,

and is delimited by the initial state (Fig. 1(a)). In

our test case (Fig. 1(b)) we divide the Hilbert space

into a subspace P consisting of the n = (3,4) levels

and a complement Q (n = (1,2)). For this example

there exists only �loss� of probability from P into Q

but no �back coupling�. The unperturbed Hamilto-

nian of the system including relativistic corrections
and the Lamb-shift is

HS ¼ �r2
~r=2� Zp=r þ DH rel þ DHLamb: ð8Þ

The matrix elements of the transition operator

S for the radiative decay are SabðIÞ ¼
2ffiffiffiffiffi
3c3

p x3=2
ba hajrIjbihðxbaÞ, where the index I indicates
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Fig. 1. Kr35+ ion in vacuum under the influence of radiative

decay only. (a) Full Hilbert space HS with the initial state 4p.

(b) Decomposition into subspace P and complement Q. (c)

Comparison for the real and imaginary parts of the relative

coherence CabðtÞ ¼ rabðtÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
raaðtÞrbbðtÞ

p
between the 3s1

2
;1
2
and

the 3d3
2
;1
2
states calculated exactly for the entire Hilbert space HS

and with the non-unitary QTMC within subspace P.
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the polarization of the emitted photon. The near-

perfect agreement between the exact result for the

relative coherence and the one calculated with

our method employing the split into the P and Q

spaces in Fig. 1(c) demonstrates the validity of

the non-unitary approach. Clearly this level of

agreement is, in part, due to the fact that the back

coupling from Q to P, which is neglected in our
approach, vanishes exactly in this problem.
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Fig. 2. Relative line emission intensities I3p1=2=I3s1=2 resulting

from the transmission of a Kr35+(1s) ion through amorphous

carbon at a velocity of 47 a.u. as a function of target thickness.
5. Application to collisions

Consider now the passage of a Kr35+ ion

through a carbon foil. In this case, the system

Hamiltonian is given by Eq. (8) plus the wake field
induced by the projectile ion. The environment

consists of the electromagnetic field and the target

solid, which can be decomposed into two compo-

nents. One consists of the ionic cores of the target

atoms screened by the surrounding electrons. The

interaction with ionic cores will lead to phonon
excitations in the solid. Secondly, the projectile

electron interacts with the target electrons leading

to single-particle-single-hole and collective (plas-

mon) excitations of the quasi-free electron gas.

The matrix elements of the transition operator
Sð~kÞ are in both cases proportional to haje�i~k�~rjbi
in Born approximation.

For this problem we decompose the Hilbert

space representing the internal state of the ion into

a finite subspace P consisting of all bound states

with n 6 4 and the complement Q containing the

excited states n > 4 and the continuum. The sum-

mation in Eq. (6) extending over the entire Hilbert
space of hydrogenic eigenstates including the con-

tinuum involves an infinite number of states and

hence poses a major hurdle. We bypass this hurdle

by applying a closure approximation for the calcu-

lation of CPð~kÞ. Our calculations can be compared

with experiments performed at GANIL [6] direct-

ing beams of Kr35+ ions with velocity vp = 47 a.u.

onto thin self-supporting amorphous carbon foils.
Varying the foil thickness between 3 and 220 lg/
cm2 (i.e. �0.01–1 lm) allows to study ion trans-

port from near-single-collision regime to the multi-

ple-collision regime. The relative intensities of

emitted Balmer a lines are depicted in Fig. 2 giving

a measure of the relative population of the corre-

sponding electronic states of the projectile during

the time evolution. The improved agreement with
experiment achieved with the present simulation

demonstrates the importance of the probability
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flow from P to Q and thus the need for a non-uni-

tary treatment of the problem.
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