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Abstract

Changes in the mean ionization energy of atoms in compressed matter are estimated through cage models of atomic

confinement whereby pressure is obtained in terms of the rate of change of total atomic energy with volume. Resort is

taken to a recently implemented shellwise Thomas–Fermi–Dirac–Weizsacker theory for confined atoms to construct the

atomic energy functional, which is self-consistently optimized for different confinement conditions. The resulting mod-

ified atomic orbital densities are then used within the Local Plasma Approximation to evaluate the corresponding orbi-

tal and total mean excitation energies. Good agreement is obtained with accurate calculations for free atoms. For

compressed atoms agreement is found with a previously derived universal expression [J.M. Peek, Phys. Rev. A 36

(1987) 5429] for total mean excitation energies suggesting its adequacy for this class of studies.
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1. Introduction

Theoretical predictions [1,2] of differences in the

stopping and range of heavy ions traversing a
material subject to high pressures as compared to

the case of normal pressure indicate an important
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effect in the stopping dynamics mainly due to the

pressure dependence of the atomic mean excitation

function in addition to corresponding changes in

the target bulk properties. The relevance of this
class of studies may be directly related with ranges

of fission fragments in highly compressed fissile

targets [1] and geothermometry experiments on

the role of pressure to stop the normal process of

length shrinkage of fission fragment tracks in

materials extracted from deep boreholes in the
ed.
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earth crust (e.g. fluoroapatite), during isochronal

thermal annealing in the laboratory [3]. It is well

known that the inelastic energy loss process be-

tween a bare charged projectile and a target atom

or molecule has its origin in the energy transfer to
the internal degrees of freedom of the target mate-

rial which are accounted for through an excitation

function. According to Bethe�s original work, the

electronic stopping cross section (Se) of a swift

bare ion of charge Z1 and velocity v is given as [4]

SeðvÞ ¼
4pZ2

1Z2e4

mv2
ln

2mv2

I0

� �
; ð1Þ

where Z2 is the number of electrons composing the

atomic scatterer and m and e the electron mass and
charge, respectively. I0 in Eq. (1) is the logarithmic

mean excitation energy defined as [5]

Z2 ln I0 ¼
X
n

fn0 lnðEn � E0Þ; ð2Þ

with fn0 being the dipole oscillator strength for the
transition from the ground-state energy E0 to a

state of energy En and the sum involving all dis-

crete and continuum states. Formally, I0 is evalu-

ated in terms of the dipole oscillator strength

(DOS) sums [6,7] yielding accurate predictions as

compared to experiment. However, the actual the-

oretical computation of DOS requires a difficult

and complicated process involving well defined
ab initio methods to construct accurate atomic

and molecular wavefunctions [7].

A useful alternative means to evaluate I0 is the

Local Plasma Approximation (LPA) [8] whereby

the dynamical response of an atom in the stopping

medium is characterized by the plasma oscillation

of the electron cloud. Considering the atom as an

inhomogeneous electron gas with local electron
density q(r) the local plasma frequency xp(r) is

given as

xpðrÞ ¼ ½4pe2qðrÞ=m�1=2: ð3Þ
Within this approximation, the atomic mean exci-

tation energy is given as

Z2 ln I0 ¼
Z

qðrÞ ln½c�hxpðrÞ�d3r; ð4Þ

with c an empirical parameter introduced to ac-

count for polarization effects in single-particle
excitations. This parameter has been generally

chosen as c = 1 for light atoms, where polarization

effects are not so important, and c ¼
ffiffiffi
2

p
for hea-

vier atoms (for a review, see [9]).

A major advantage of the LPA is its representa-
tion in terms of the electronic density whose

changes in matter under high pressures may render

changes in the mean excitation energy and conse-

quently in Se. The aim of this work is to study

these changes by resorting to the LPA and a model

of atomic confinement whereby pressure, energy

and electron density are obtained self-consistently.
2. Theory

2.1. Pressure and the confinement model

The effect of pressure on the ground-state elec-

tronic and structural properties of atoms and mol-

ecules have been widely studied through quantum
confinement models [10] whereby an atom (mole-

cule) is enclosed within e.g. a spherical cage of

radius R with infinitely hard walls. In this class

of models, the ground-state energy evolution as a

function of confinement radius renders the pres-

sure exerted by the electronic density on the wall

as P = �oE/oV. For atoms confined within hard

walls, as in this case, pressure may also be ob-
tained through the virial theorem [11]:

PðRÞ ¼ EðRÞ þ KðRÞ
3V

; ð5Þ

with R the cage radius, V its volume and E(R),

K(R) the corresponding total ground-state elec-

tronic and kinetic energy, respectively, which are
self-consistently obtained for each cage radius.

The energy dependence on cage radius is obtained

in this work through a recently developed shellwise

implementation of the Thomas–Fermi–Dirac–

Weizsacker (TFDW) density functional theory

for confined atoms [12]. The relevant ideas are sta-

ted here in a condensed manner.

Let ETFDW(q,R,k) denote the TFDW energy-
density functional for the neutral atom inside a

spherical cage of radius R, where q stands for the

total electron density and k is a scaling parameter

for the Weizsacker inhomogeneity correction [13].
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It is well known that the Thomas–Fermi electron

gas model for the atom does not account for shell

structure. However, Wang and Parr [14] and others

[15] have shown that, when the electron density is

introduced in ETFDW(q,R) in an ad hoc manner
to account for the shellwise structure, the opti-

mized energies and resulting atomic densities corre-

spond reasonably well to the Hartree–Fock values.

Within this spirit, we write the atomic electronic

density, q, as the sum of orbital densities, qi:

q ¼
X
i

qiðr;R; niÞ; ð6Þ

with

qiðr;R; niÞ ¼ Nir2ni�2e�2nirð1� r=RÞ; ð7Þ

where ni is the principal quantum number of orbi-

tal ‘‘i’’, ni the corresponding orbital parameter and

Ni the relevant normalizing constant such that the

orbital population xi satisfies the conditionZ
C
qiðr;R; niÞds ¼ xi; ð8Þ

where C indicates the domain of integration within

the confinement volume.

Note that the term in parenthesis in Eq. (7)

guarantees that the orbital density (and total den-

sity) vanishes at the boundary of the confining

volume.
Using Eqs. (6)–(8) for each value of R, the opti-

mized energy and orbital parameters ni are ob-

tained by requiring that

oETFDWðq;R; kÞ
oni

� �
R

¼ 0: ð9Þ

The parameter k has been set in this work as

k = 1/8 after a systematic energy optimization
[12] for first and second row atoms yielding energy

values close to the Hartree–Fock ones for free [16]

and confined [17] atoms. For this reason, in the

subsequent discussion the energy-density func-

tional employed here will be referred to as

TFD 1
8

� �
W.

2.2. Pressure effects on the mean excitation energy

The energy optimization procedure indicated by

Eq. (9) implies a change in the orbital parameters ni
and consequent change of the electron density as

pressure increases. Accordingly, the LPA as given

by Eqs. (3) and (4) will reflect corresponding

changes in the total mean excitation energy. More-

over, the orbital treatment of the TFD 1
8

� �
W func-

tional allows to estimate the changes in orbital

densities and hence changes in orbital mean excita-

tion energies. Following the orbital local plasma

approximation (OLPA) [18,19] the total mean exci-

tation energy given by Eq. (4) may be expressed as

ln I0 ¼
1

Z2

X
i

xi ln I i; ð10Þ

where the mean excitation energy of orbital ‘‘i’’ is

given as

ln I i ¼
1

xi

Z
qiðrÞ ln �hci

4pe2qðrÞ
m

� �1=2
" #

d3r ð11Þ

and qi(r) is the local orbital electron density and
q(r) the angular average of local total electron den-

sity and ci the corresponding scaling parameter as

proposed in the Lindhard–Scharff LPA theory.

Since no specific criterion exists to assign a value

to ci for each orbital, its value is chosen here as

unity as done in [18,19] in order to avoid depen-

dence of the theoretical predictions upon any ad

hoc parameter.
The implementation of Eqs. (10) and (11) to the

case of confined systems is straightforward by con-

sidering all integrals within the confinement do-

main C. This method has been successfully

applied to the case of pressure effects in the core

and bond contributions to proton stopping in

molecular targets [20].

For purposes of comparison with other calcula-
tions, the set of calculated orbital mean excitation

energies for atoms with 2 6 Z2 6 18 were grouped

in shell-like contributions as suggested by Chen

et al. [21], i.e.

ln IS ¼
1

ZS

X
i

xiS ln I iS; ð12Þ

where S stands for shell K, L, M; ZS is the number

of electrons in shell S and the sum is done over

orbitals composing that shell with corresponding
orbital population xiS and mean orbital excitation

energy IiS.



1 For discussion purposes we have chosen to use the cage

radius in this figure and not the pressure, since pressure has

different values for different atoms in the same confinement

volume.

S.A. Cruz et al. / Nucl. Instr. and Meth. in Phys. Res. B 230 (2005) 46–52 49
3. Results and discussion

The scheme discussed in the previous section

has been applied to the calculation of the orbital

and total mean excitation energies for free and
confined atoms with 2 6 Z2 6 18. Table 1 displays

– as an example – the relevant quantities obtained

in this work for oxygen, neon and chlorine, for a

selected set of values of the confining radius. The

last three columns in this table correspond to the

free-atom case. To the authors� knowledge, this is
the first time that the shellwise implementation of

the TFDW density functional is applied to the cal-
culation of orbital and total mean excitation ener-

gies. Hence, before discussing the pressure effects

on mean excitation energies, let us first analyze

the predictions of this work for the free-atom case

and compare with available results in the

literature.

Fig. 1 shows the mean excitation energies of the

K, L and M shells as a function of atomic number
obtained in this work ðTFD 1

8
WÞ (solid circles) as

compared to accurate calculations by Oddershede

and Sabin (OS) [7] using the DOS method (open

squares), the original OLPA method developed

by Meltzer et al. (MST) [18] based on the local spin

density approximation to density functional the-

ory (open diamonds) and the calculations by Chen

et al. [21] using an analytical Moliere-type repre-
sentation of the HFS densities and the original

MST-OLPA method [18] (open circles). It seems

clear from this figure that the predictions of the

TFD 1
8
W-based LPA method for the shell (and

orbital) mean excitation energies are in reasonable

agreement with the other – more elaborate – calcu-

lations. We note that all the OLPA-based calcula-

tions use ci = 1. Interestingly, the K-shell
predictions of this work are overall in better agree-

ment with the accurate DOS calculations by OS.

This may be related with the adequate description

of the TFD 1
8
W cusp density at the origin for the 1s

orbital [12]. The observed quantitative discrepancy

between this work and the others in the case of

the L-shell for Li, Be and B and in general for

the M-shell remains still to be explained. In spite
of this, the total mean excitation energies obtained

through Eq. (10) show the right qualitative behav-

ior and an improved quantitative trend over other
OLPA-based methods as may be verified from Fig.

2, where we have plotted the corresponding accu-

rate values by OS and those by MST.

From the previous discussion we may deem the

TFD 1
8
W method as promising means to treat,

with some confidence, the orbital and total mean

excitation energies. We now turn our attention to

the pressure effects on these quantities. Going back

to the results shown in Table 1, we first notice an

increasing value of the orbital mean excitation

energies as pressure increases (confinement radius

decreases). This behavior is observed for all, except

the 3s orbital values in chlorine, which first show a
slight increase form the free-case to moderate con-

finement and then diminishes. A careful analysis of

the evolution of the mean excitation energy for this

orbital indicates a monotonic increase for cage

radii R < 3.5 a.u. This aspect, together with the al-

ready discussed overestimation of M-shell mean

excitation energies for the free atoms are currently

investigated. Interestingly enough, this anomaly
seems to have no serious effect on the behavior

of the total mean excitation energy as pressure in-

creases, as may be verified from Table 1 and Fig. 3.

In this figure we have plotted – as an example – the

cage-radius dependence 1 of the total mean excita-

tion energies for O (dotted curves), Ne (dashed

curves) and Cl (continuous curves) obtained in this

work as compared with corresponding values pre-
dicted by Peek [22] (triangles for O, circles for Ne

and squares for Cl). The latter author developed a

universal relation for I0/Z for confined atoms

using the original LPA with c = 1.41 (Eqs. (3)

and (4)) and the Thomas–Fermi equation for the

radial density considering the nature of its solu-

tions for neutral atoms of finite radius. Inciden-

tally, this important seminal paper seems to have
been unjustly undiscovered in the literature. Here

we give it the merit it deserves. For purposes of

comparison, we show in Fig. 3 our predicted I0
values for c = 1 and c = 1.41.

As gathered from Fig. 3, the results of this work

with c = 1 compare more favorably, overall, with



Table 1

Values of orbital parameters (ni), orbital mean excitation energies (Ii), total mean excitation energy (I0), pressure (P) and total energy (E) for O, Ne and Cl for selected

values of cage radii (R)

3.5 6.0 10 1
Z R (a.u.) nða�1

0 Þ Ik (eV) nða�1
0 Þ Ik (eV) nða�1

0 Þ Ik (eV) nða�1
0 Þ Ik (eV)

8 1s 7.48560 424.79 7.53757 422.49 7.57140 422.22 7.61733 422.19

2s 3.83399 105.83 3.97881 102.72 4.02111 102.24 4.06832 102.18

2p 1.69786 38.45 1.58863 29.92 1.61667 28.97 1.66998 28.87

I0 (eV) 90.3 78.9 77.6 77.4

P (GPa) 135 2.5 0.03 0

�E (eV) 2031.622 2046.609 2047.670 2047.752

10 1s 9.53816 616.21 9.59099 613.73 9.62511 613.57 9.67089 613.56

2s 5.31549 170.76 5.39984 166.92 5.43661 166.62 5.48314 166.58

2p 1.97501 52.72 1.96439 46.92 2.00431 46.42 2.05597 46.34

I0 (eV) 109.3 101.2 100.4 100.3

P (GPa) 150 1.9 0.03 0

�E (eV) 3476.786 3491.555 3492.426 3492.562

17 1s 16.8858 1487.17 16.94100 1485.63 16.97310 1485.06 17.01840 1485.02

2s 9.88483 479.21 9.98488 478.31 10.01490 477.86 10.06090 477.82

2p 4.96131 218.74 4.98372 210.93 5.01509 209.94 5.06203 209.83

3s 2.51103 51.71 3.21812 67.72 3.36418 69.46 3.41849 69.45

3p 2.51924 51.99 2.01859 37.82 1.96129 28.59 2.00982 28.34

I0 (eV) 166.2 146.6 142.2 141.8

P (GPa) 440.4 11.6 0.14 0

�E (eV) 12463.149 12515.291 12520.922 12521.248
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Fig. 1. Mean excitation energy (in eV) of the K, L and M shells

for first and second row elements. Solid circles: this work (Eq.

(12)). Open squares: obtained from oscillator strength calcula-

tions from [7]. Open diamonds: obtained from Eq. (12) and the

OLPA values from [18]. Open circles: values reported in [21]

using the OLPA [18] and a Moliere representation of HFS

densities.
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Fig. 2. Total mean excitation energies (in eV) for first and

second row atoms. Solid circles: this work. Open squares: [7],

oscillator strength calculation. Open diamonds: OLPA calcu-

lation from [18].
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those predicted by Peek. This indicates that taking

c = 1 in our density functional approach consti-
tutes a reasonable approximation, although the

lack of experimental information on mean excita-

tion energies for compressed target materials pre-

vents us to assess a definite conclusion on this

issue. The universal character of the relation ob-

tained by Peek and its reasonable agreement with

the TFD 1
8
W method make the former a useful

means to estimate total mean excitation energies
for compressed atoms. It is important to observe

that the agreement between both treatments is

not obvious. The TFD 1
8
W method consists on

the energy optimization through an ansatz density

function which is not solution of the Thomas–Fer-

mi equation. Both treatments have in common the

electron-gas expressions for the energy compo-

nents and keep self-consistency through Poisson�s
equation (a known requirement to derive the
Thomas–Fermi equation from energy consider-
ations). It is then remarkable that consistency is

kept between both calculations.
4. Conclusions

Pressure effects on the orbital and total mean

excitation energies have been studied using a shell-
wise implementation of the TFDW density func-

tional method recently derived for confined

atoms. For free atoms, a general agreement with

accurate calculations is observed for inner-shell

mean excitation energies whereas for the outer-

most shells the predicted mean excitation energies

seem to be overestimated relative to the other

methods. However, good agreement is observed
for total mean excitation energies. For atoms

under pressure, the total mean excitation energies

obtained in this work show reasonable agreement

with those obtained by Peek [22] thus giving sup-

port for the use of his universal relation to estimate
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of pressure effects on the stopping total mean exci-

tation energy. A major advantage of the TFD 1
8
W

is its ability to explore shell structure contributions

and yet keeping the characteristics for the study of

compressed many-electron atoms.
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