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Abstract

We found that differential scattering cross sections for medium and low energy He+ and Ne+ impact on high

Z-atoms were significantly enhanced compared with those calculated from the inter-atomic potential based on the

Hartree–Fock–Slater atomic model coupled with the bare nuclear charge of a projectile. The enhanced scattering cross

sections determined experimentally are reproduced well by a simple model that the center of gravity of target electrons

is shifted toward the projectile during a large-angle collision. The shift~d from the target nucleus is expressed as a func-

tion of inter-nuclear distance ~r in terms of a dipole moment ~l ¼ Z2e~d ¼ aZ1e~r=r3 (Z1 and Z2: atomic numbers of

projectile and target, a: polarizability, e: electron charge). The effective polarizability b (�aZ1/Z2) is expressed as a func-

tion of ion velocity v [107 cm/s], in the form b = 0.079exp[�0.46v].

� 2004 Elsevier B.V. All rights reserved.
1. Introduction

Previously, we observed the differential scatter-

ing cross sections for 90–130 keV He+ and Ne+

ions scattered to a large-angle from Sb and Hf

and found that they are considerably enhanced

for Ne+ impact but not for He+ incidence [1].

The word �enhanced� used here means the fact that
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the observed scattering cross sections are signifi-
cantly larger than those calculated from the

inter-atomic potential based on the Hartree–

Fock–Slater atomic model [2,3] coupled with the

bare nucleus charge of a projectile. The enhance-

ment is explained quantitatively by a simple model

that the center of gravity of target electrons are

shifted from the nucleus toward the incoming pro-

jectile probably due to formation of a molecular
orbital during a large-angle collision. Formation

of a molecular orbital results in a kind of polariza-

tion of a target atom, which depends on projectile

Z-number and collision time.
ed.
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Such a phenomenon would also take place for

low energy ion impact on a high-Z atom.

Recently, Kishi and Morita [4] observed time-of-

flight spectra for low energy He+ ions backscat-

tered to 180� from the adatoms of the
Si(111)

ffiffiffi
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p

�
ffiffiffi

3
p

-Ag, Sb, Sn, Pb and Bi structures

(co-axial impact collision ion scattering spectro-

scopy: CAICISS [5]). The differential scattering

cross sections derived are compatible with the val-

ues calculated from the Thomas–Fermi potential

[6], if the detection efficiency of the micro-channel

plate (MCP: Hamamatsu Photonics) employed is

assumed to be unity (100%) for the He energy
above 1 keV. According to the report [7], how-

ever, the detection efficiency of the MCP made

by Hamamatsu Photonics Corporation is almost

constant 50 ± 5% for He+ and He0 beams with en-

ergy above 1 keV. In fact, we also estimated the

detection efficiency of the MCP (Hamamatsu Pho-

tonics, PIAS) to be 52 ± 3% using an electrostatic

analyzer combined with a bakable solid state
detector [8]. The ratio of open area of the MCP

surface is a decisive factor of the detection effi-

ciency and it ranges from 50% to 60% [9]. So,

we corrected the differential scattering cross

sections reported by Kishi and Morita assuming

the detection efficiency of 50%. This leads to con-

siderable enhancement of the scattering cross

sections.
In this paper, we propose a model of a dynamic

response of target electrons during a head-on col-

lision and explain quantitatively the above en-

hanced scattering cross sections. Analysis is also

performed for previously measured scattering

cross sections for 90–130 keV Ne+ impact on Sb

and Hf and for 3 keV Ne+ impact on Ni(111)

[10]. Thus, dynamic response of target electrons
upon ion impact is discussed in detail in terms of

projectile and target Z-numbers, collision time

and impact parameter.
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Fig. 1. CAICISS spectrum observed for 3 keV Ne+ incident on

Ni(111) at an angle of 25–33� scaled from surface normal and

backscattered to 180�.
2. Experiment and data analysis

The detail of the experiments performed for
medium energy Ne+ impact on Sb and Hf is

referred to the literature [1]. The absolute

amounts of Hf (HfO2 (8 Å)/Si(001)) and
SbðSið111Þ
ffiffiffi
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�
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p

-Sb) were determined by

Rutherford backscattering (RBS) using 2.0 MeV

He+ ions. As mentioned earlier, the scattering

cross sections reported by Kishi and Morita [4]

were corrected assuming the detection efficiency
of 50%. According to their report, the absolute

amounts of the adatoms adsorbed on Si(111) sub-

strates were also determined by RBS with 2.0 MeV

He+ beams. The integrated beam currents were

estimated from monitoring the beam current with-

out chopping and from the dwell time of the chop-

ping pulse. In the case of 3 keV Ne+ impact on

Ni(111), the beam current was measured directly
(�10 pA). Corrections were made for inclusion

of the isotope of 22Ne (9%). In the above CAICISS

experiments, neutrals and ions incident with a

higher charge (He2+ and Ne2+) were eliminated

with a pair of electric deflectors. In all the experi-

ments, the vacuum of the scattering chambers were

maintained better than 5 · 10�10 Torr. Fig. 1

shows the CAICISS spectrum observed for 3 keV
Ne+ incident on Ni(111) at an angle of 25–33�
scaled from surface normal and backscattered to

180�. The scattering geometry guarantees no

focusing effect and no contribution to the scatter-

ing yield from underlying layers. The relatively

high background level is responsible for a dark

current of MCP.
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3. Results and discussions

We calculated the differential scattering cross

sections using the following four types of inter-

atomic potentials: (i) unscreened, (ii) Molière,
(iii) ZBL [6] and (iv) HF. The Thomas–Fermi po-

tential gives almost the same scattering cross sec-

tions as the Molière potential. The HF potential

means the electric one calculated from a spheri-

cally symmetric electron density given by the Har-

tree–Fock–Slater model multiplied by the bare

projectile charge. The differential scattering cross

section is derived numerically by simulating two
ion trajectories for slightly different impact

parameters.

Fig. 2 shows the scattering cross sections [4]

corrected assuming the detection efficiency of

50% for 2 keV He ions scattered to 180�. The result
is compared with calculations using Thomas–

Fermi (Molière), ZBL and HF potentials. Appar-

ently, the cross sections determined experimentally
are more than twice larger than the calculated ones.

In the case of 3 keV Ne+ impact on Ni(111), the

scattering cross section is also enhanced more than

80% compared with that calculated from the HF

potential.
Fig. 2. Differential scattering cross sections for 2 keV He+ ions

backscattered to 180� reported by Kishi and Morita [4].

Corrections were made assuming the detection efficiency of

50%. Solid, dashed and dot-and-dashed curves are the calcu-

lated values using the HF (He2+ is assumed), ZBL and

Thomas–Fermi potentials, respectively.
In order to explain the enhanced scattering

cross sections, we introduce a simple model that

target electrons are attracted to the nucleus of an

incident projectile and the displacement ~d from

the target nucleus is proportional to the electric
filed ~E induced at the target nucleus. If one as-

sumes that the center of gravity of the target elec-

trons is shifted by~d without changing its spherical

symmetry, the target atom has a dipole moment of
~l.

~l ¼ Z2e~d ¼ a~E ¼ aZ1e~r=r3; ð1Þ
where a corresponds to a polarizability of the tar-

get atom and e, Z1 and Z2 are the electron charge

and atomic numbers of projectile and target atom,

respectively. Now, we consider a head-on collision

and thus d is expressed by

d ¼ a
Z1

Z2

� 1
r2

� b
1

r2
: ð2Þ

Here, b is defined as effective polarizability [Å3].

Fig. 3 indicates the electric potential generated

at the position of projectile as a function of in-

ter-nuclear distance (r(t), t: time) for He+ impact

on Sb. Here, the HF potential is employed (He2+

is assumed) and the effective polarizability b is as-

sumed to be 2.7 · 10�2 Å3. If the shift of center of
Fig. 3. Electric field generated by target electrons and nucleus

at the position of projectile for 2 keV He+ impact on Sb (head-

on collision). The effective polarizability b is assumed to be

2.7 · 10�2 Å3 and HF potential (He2+) is used. Inset pictures

nuclei and electron distributions of projectile and target atom

schematically.
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gravity of target electrons d exceeds the distance of

closest approach rmin, the screening of the target

nuclear charge is reduced and thus the scattering

cross section is enhanced. On the other hand, if d

is smaller than rmin, the screening is enhanced
and consequently the scattering cross section is

diminished.

Now, we deduce the b values to reproduce the

scattering cross sections determined experimen-

tally. The effective polarizability derived is plotted

as a function of incident ion velocity (v) in Fig. 4.

The b values obtained for He impact on Ag, Sn,

Sb, Pb and Bi are almost same within experimental
errors (not shown here). The polarizability (a) de-
rived from optical index data ranges from 5 to

7 Å3 [11], which is about one order of magnitudes

larger than those obtained here. However, at low

velocity limit (v = 0), the a values are 2–3 Å3,

which approaches the above optical data. The b
values are scaled by the following relation:

b ¼ 0:079 exp½�0:46v�; ð3Þ
where the unit of the ion velocity is [107 cm/s].

Apparently, the polarization is reduced with

increasing ion velocity, namely with decrease in

collision time. If one applies this relation to He+

impact on Sb (head-on collision), the scattering

cross sections for energies above 5 keV are pre-
dicted to coincide with those calculated from the

static inter-atomic potentials (HF) within experi-

mental errors.
Fig. 4. Effective polarizability b [Å3] as a function of velocity of

incident ions.
As discussed in the previous paper [1], another

factor increasing the scattering cross sections is a

multiple scattering effect. For medium energy

Ne+ impact on HfO2 (8 Å)/Si(001), we confirmed

that the multiple scattering effect was negligible
for total path-length in HfO2 less than 17 Å by tilt-

ing the target. In the case of 180� scattering, the

kinematic scattering factor is quite the same as

that for twice of 90� scattering. This contribution

may be significant but not too large to cancel out

the enhancement of the scattering cross sections.
4. Summary

We found that differential scattering cross sec-

tions for medium and low energy He+ and Ne+ im-

pact on high Z-atoms were significantly enhanced

compared with those calculated from the inter-

atomic potential based on the Hartree–Fock–Sla-

ter model coupled with the bare nuclear charge
of a projectile. The enhanced scattering cross sec-

tions determined experimentally are reproduced

well by a simple model that the center of gravity

of target electrons is shifted toward the projectile

without changing the spherical symmetry during

a large-angle collision. It means a formation of a

molecular orbital or a kind of local Stark effect

instantaneously. The shift ~dðtÞ is expressed as a
function of inter-nuclear distance ~rðtÞ in terms of

a dipole moment ~l ¼ Z2e~d ¼ aZ1e~r=r3. The effec-

tive polarizability b (�aZ1/Z2) is expressed as a

function of ion velocity v [107 cm/s], in the form

b = 0.079 exp[�0.46v].
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