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Abstract

Electronic energy loss of molecular clusters as a function of impact-parameter is less understood than atomic energy

loss. Vicinage effects due to mutual interference between cluster fragments play a key role in the determination of the

cluster electronic energy loss. In this work, we describe a molecular extension of the perturbative convolution approx-

imation (PCA) energy loss model, namely MPCA (molecular PCA), which yields remarkable agreement with first-order

Born semiclassical approximation (SCA) results. The physical inputs of the model are the oscillators strengths of the

target atoms and the projectile electron density. A very good agreement is obtained with time consuming full first-order

calculations for bare incident molecular clusters for several angles between cluster axis and velocity direction.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Beams of molecules and ionic clusters are useful

tools in both fundamental research and in material

science and plasma physics. The effects of a cluster

clearly deviate from the sum of individual effects of

each cluster component.
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In particular, cluster-beam experiments were re-
ported in mid 70s by Poizat and Remillieux [1]

and, not much time after, the first evidence of

the vicinage effect was reported by Brandt et al.

[2]. Since then, it is established that the cluster en-

ergy loss is different from the sum of energy losses

of its separated components. An increased energy

transfer due a cluster may even be used in inertial

nuclear fusion processes [3,4].
If the ions enter along a principal axis of a crys-

talline target, their motion will be guided due the
ed.
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correlated collisions with the target atoms. These

ions, then, are said to be channeled. The channel-

ing motion of a molecule (or a cluster) will also de-

pend on the Coulomb heating phenomenon (i.e. an

increased transverse energy of the cluster frag-
ments due to the mutual Coulomb repulsion), dis-

covered in mid 70s by Caywood et al. and Poizat

and Remillieux [5,6]. Recently, the Coulomb heat-

ing was simulated [7,8] and experimentally deter-

mined in a quantitative way [8].

The cluster stopping-power can be theoretically

treated by the united-atom model [9,10], that de-

scribes the cluster as an equivalent single atom,
with atomic number and mass being the sum of

atomic number and mass of each component.

However, that model is limited to the very begin-

ning of the interaction between the cluster and

the target, therefore, it cannot be used to under-

stand several channeling key effects, for instance,

the Coulomb heating effect. An important theoret-

ical treatment is the dielectric formalism in a
homogenous electron gas target [2,11] (a detailed

review about vicinage effect and dielectric formal-

ism for clusters can be found in [12]) and, to ac-

count for the target-core effect, the local density

approximation (LDA) model (used for clusters in

[13]). However, although successful for homoge-

neous targets, the dielectric formalism cannot be

used to easily describe the cluster energy loss under
channeling conditions, where the target cannot be

treated as being homogeneous. Then, a theoretical

investigation of the cluster stopping-power under

channeling conditions, considering the Coulomb

heating, requires the use of the impact-parameter

method, as presented by Jensen et al. [14] but for

distant-collisions only.

This work describes an extension of the pertur-
bative convolution approximation (PCA) model

[15,16], based on the impact-parameter method,

for molecules and clusters, namely MPCA (molec-

ular perturbative convolution approximation).

MPCA gives the energy loss as a function of im-

pact-parameter without time consuming first-order

calculations using a set of thousands of final states

for both distant- and close-collisions. The starting
point of the model is the diatomic molecule. The

physical inputs of the model are the target oscilla-

tor strengths, the target electronic density, the pro-
jectile screening function and the molecular

alignment angles.
2. Model

The MPCA (molecular perturbative convolu-

tion approximation) model is an extension of

PCA model [15,16] made for cluster projectiles.

Here, we present only a short outline of the PCA

method but special attention will be draw to the

interference terms that arise from the sum of all io-

nic potentials. The electronic energy loss is calcu-
lated from the expression

QðbÞ ¼
X
b

abð~bÞ
��� ���2 eb � e0

� �
; ð1Þ

which involves a sum of all final target states with

energy eb (e0 is the ground-state energy) and the

corresponding calculation of all transition ampli-

tudes ab for each cluster impact-parameter b (the

minimum distance between the center of the clus-

ter and the target nucleus). In order to calculate
the energy loss due to target ionization and excita-

tion in a first order perturbation framework, we

have to consider the amplitudes for each electronic

transition between the initial state j0i to a final

state jbi due to the cluster with N ions.

abð~bÞ¼�i
Z þ1

�1
dt ei eb�e0ð Þt b

XN
i¼1

V i ~r�~RiðtÞ
� ������

�����0
* +

;

ð2Þ
where Vi is the interacting potential between the

ith ion (whose charge is Zi) in the cluster and the

target electron. The ith ion position in space is
~RiðtÞ and~r is the target electron coordinate, both

relative to the target nucleus. In the first-order

treatment the transition amplitude is only a coher-

ent sum of amplitudes due to each ion of the clus-

ter. If not indicated otherwise, all calculations
throughout this work are in atomic units

(�h ¼ me ¼ e ¼ 1).

The characteristic time of interaction between

the cluster and the target is much smaller than

the characteristic times of vibrational and rota-

tional cluster transitions. Therefore, the corre-

sponding degrees of freedom can be neglected.
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Taking these assumptions into account, all calcu-

lations shall be done for a cluster projectile with

impact-parameter~b with respect to the cluster cen-

ter. For a straight-line projectile motion without

vibrational and rotational degrees of freedom,
the time dependent position of the ith projectile

nucleus is given by ~RiðtÞ ¼~bi þ~vt þ~diz, where ~di

is the distance between the molecule center and

the ith ion, diz is the z-component of ~di (being

diz ¼ k~dizk), ~diq is the transversal component of ~di

(being diq ¼ k~diqk), ~bi is given by ~bi ¼~bþ~diq,

which is the ith ion impact-parameter and~v (paral-
lel to the z direction) is the cluster velocity. Fig. 1
shows these vectors for a diatomic molecule. The

angle h in Fig. 1 refers to the angle between the

diatomic molecule axis and the z-axis. Finally,

for the same molecule, the angle / refers to the

angle between ~diq and the x-axis.

The interacting potential Vi may be one of the

following (more details about these potentials are

given in [16]):

(a) the Coulomb potential, that describes the

potential induced by a moving point charge

in vacuum;

(b) the Bohr potential, that describes a potential

produced by a external point charge immersed

in a homogenous electron gas. The screening

parameter (ai) can be obtained either from
the Debye screening length [17] or from the
Fig. 1. Representation of the collision geometry, showing the

target nucleus, the target electronic distribution, the projectile

nuclei, the impact-parameter vectors and the projectile velocity.
generalization of the Friedel sum rule for

finite velocities derived by Lifschitz and Arista

[18];

(c) the single-zeta potential, that describes the

potential due a projectile carrying one or two
bound electrons (ni = 1,2) in hydrogen-like 1s

orbitals.

It is important to point out that not all ions of

the cluster are necessarily generating the same kind

of potential. Due to dynamic capture-loss pro-

cesses, it is possible to find one ion of projectile

cluster completely ionized, while its neighbors,
after capturing an electron during ion–matter

interactions, can have a single-zeta potential. This

possibility must be taken into account in computer

simulation codes.

According to the atomic PCA model, in a first

step we shall find approximations for Q(b) (Eq.

(1)) that are valid for a limited range of impact-

parameters and in a second step these approxima-
tions should be linked. At large impact-parameters

the dipole-approximation for Vi can be used, and

thus, an analytical expression [19,20] for Q(b)

may be obtained. Inserting the cluster interacting

potential, we have, for large impact-parameters,

an expression of the form

QdipoleðbÞ ¼
PN
i¼1

Qdipole
atomicð~biÞ þ

PN
i¼1

PN
j>i

Qdipole
int ð~bi;~bjÞ;

ð3Þ

where

Qdipole
int

~bi; ~bj
� �

¼
X
b

fb
2ZiZj

v2
cos

xb0dijz

v

� �

� 2~bi �~bj
bibj
� �2 g? bið Þg? bj

� �
þ
2gkðbiÞgk bj

� �
bibj

" #
; ð4Þ

where, for the Coulomb potential, the functions

gk(bi) and g?(bi) read

gk bið Þ ¼ xb0bi
v

� �
K0

xb0bi
v

� �
ð5Þ

and

g? bið Þ ¼ xb0bi
v

� �
K1

xb0bi
v

� �
; ð6Þ
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where K0(x) and K1(x) are second kind Bessel func-

tions (for the Bohr and single-zeta potentials,

expressions are given in [16]), fb = 2jhbjzj0ij2(eb�e0)
are the oscillator strengths, dijz = dicoshi�djcoshj
and hi is the angle between the z-axis and ~di. The

first term in Eq. (3) corresponds to the individual
Qdipole

atomicðbÞ associated to each ion (see expressions

in [16]) and the last one is associated to interference

effects (vicinage). The first interference term in Eq.

(4), the one associated with g?, corresponds to the

classical sudden approximation. It is important to

point out that for small bi the function g? (bi) ap-

proaches 1 and gk (bi) approaches 0.

For small impact-parameters, the influence of
the target potential can be neglected at high

projectile energies, allowing for an analytical

expression for Qclose(b) by replacing the final tar-

get-continuum states by plane waves. Thus, the

energy transfer reads

QcloseðbÞ ¼
XN
i¼1

Qclose
atomicð~biÞ

þ
Z

d2r?Kclose
int ~r? �~b

� �Z 1

�1
dz q ~r?; zð Þ;

ð7Þ
where again the first term corresponds to a inco-

herent sum of energy losses due to each ion from

the cluster (already defined in [15]) and

Kclose
int ð~bÞ ¼ 2

v2
XN
i¼1

XN
j>i

ZiZjhint ~bi;~bj
� �

ð8Þ

is the interference term with

hint ~bi;~bj
� �

¼ 4v2
Z 1

0

dqq2

� cos 2vq2dijz

� ��
q J 0 2vqbi

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p� �
K0 2vq2bj

� �h
þ J 0 2vqbj

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p� �
K0 2vq2bi

� �i

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p ~bi
bi
�
~bj
bj

K1 2vq2bj
� �

J 1 2vqbi
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p� �h

þK1 2vq2bi
� �

J 1 2vqbj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q2

p� �i

; ð9Þ

where J0 and J1 are first kind Bessel functions.

The function hintð~bi;~bjÞ approaches zero for
bi�1/v or bj�1/v and, for large values of b (i.e.

large values for both bi and bj), it reaches
hint ~bi;~bj
� �

� 2
~bi �~bj
bibj
� �2 ; ð10Þ

recognized as the interference part of the classical

sudden approximation result [20] for a diatomic
molecule.

In what follows, we propose the following gen-

eral formula, applicable to all impact-parameters,

namely

QðbÞ ¼
Z

d2r?KMPCA ~r? �~b
� �Z 1

�1
dz q ~r?; zð Þ;

ð11Þ

where the kernel is defined as

KMPCAð~bÞ ¼ KMPCA
atomic ð~bÞ þ KMPCA

int ð~bÞ; ð12Þ
where KMPCA

atomic corresponds to the sum of the energy

losses due to each individual ion from the cluster

as presented in [15] for a single ion projectile and

KMPCA
int ð~bÞ¼

P
b
fb
PN
i¼1

PN
j>i

2ZiZj

v2 cos
xb0dijz

v

� �

� hint 2v~bi;2v~bj
� �

g? bið Þg?ðbjÞþ
2gkðbiÞgkðbjÞffiffiffiffiffiffiffiffiffiffiffiffi

b2i þb2
min

p ffiffiffiffiffiffiffiffiffiffiffiffi
b2jþb2

min

p
" #

;

ð13Þ

where bmin = 1/v2 is defined in [20]. This is the

molecular perturbative convolution approxima-

tion (MPCA).

As can be observed the kernel function in Eq.
(13) is based on the expression for large impact-

parameters (Eq. (3)) by replacing the interference

term
2~bi�~bj
ðbibjÞ2

by hint(bi,bj). In this way, according to

Eq. (10), the above energy loss ansatz interpolates

smoothly small and large impact-parameters.

In Fig. 2, we compare the dipole and close-

collision interference terms with the corresponding

MPCA term for two bare diatomic molecule orien-
tations. For both orientations, we can see that

MPCA and close-collision interference terms

(from Eqs. (13) and (8), respectively) agree with

each other for small impact-parameters and the

same is observed between MPCA and dipole-

approximations (from Eqs. (13) and (4) for large

impact-parameters, thus reinforcing the validity

of our proposed general formula (11). It should
be stressed that the sudden approximation, which
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was used in [15] to link close- and distant-collisions
for atomic projectiles, in fact does not link the

interference terms for close- and distant-collisions

properly. This comes from the fact that the classi-

cal sudden approximation does not contain the

interference terms due to the phase difference

along the z-direction (e.g. the cosine term in Eq.

(4) and in Eq. (9)).

It is important to point out that Eq. (11) is valid
only for a one-electron system. In the framework

of the independent particle model, however, it is

possible to use Eq. (11) considering the electronic

density and the dipole oscillator strengths for each

electron of all occupied target shells.

In what follows, only an analysis of the interfer-

ence term will be performed. The corresponding

analysis of the monoatomic terms was already
done in [15]. The cluster under consideration will

be the diatomic hydrogen molecule. The angles h
and / shown in Fig. 1 will fix the diatomic molec-

ular orientation.
3. Discussions and conclusions

In Fig. 3 we see the results of the present

model, for two molecule orientations (where /
= 0�), for the impact-parameter dependence of

the mean energy loss of bare (top) and single-zeta

screened (bottom) H2 molecular projectiles, both

at 500 keV/amu, colliding with atomic H (full line).

We compare our results with full first-order molec-

ular SCA (semiclassical approximation), similar to

the numerical procedure seen in [21] calculations
(squares) and with full first-order SCA for two

independent protons with the same screen function

and impact-parameters as used in molecular SCA

(dashed line). In our tests, the interatomic distance

was set to 2 a.u. (about 1.06 Å).

About 3500 target states were used in SCA cal-

culations, to ensure an adequate number of partial

waves, necessary to calculate Q(b) accurately. Here
we have considered two cases. The first one the
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molecule has no bound electrons (two protons

traveling together, interacting with Coulomb

forces) and the second one where one of the proton

has captured one electron from the medium (H+

and H0 traveling together).
Fig. 3 (on the top panel) shows a fairly good

agreement between molecular SCA and MPCA

model. Moreover, it is possible to appreciate the

interference terms effect, shown by the difference

between MPCA and independent protons SCA.

For h = 90� and / = 0� (i.e. the molecule has its

axis orthogonal to its motion and parallel to the

impact-parameter direction), the increase of en-
ergy loss up to impact-parameter about 1 a.u. is

due the choice of the coordinated system. In that

orientation and for b = 1 a.u., one of the ions

(namely the second) will have a head-on-collision

with the target. In all orientations, the effect of

interference terms leads to an increase in energy

loss of about 50% for distant-collisions and less

than 10% for close-collisions. That result agrees
with the united-atom model for distant-collisions,

where the energy loss is proportional to

(Z1 + Z2)
2 (4, for Hþ

2 Þ and the independent atom

model for close-collisions, where Sc is proportional

to Z2
1 þ Z2

2 (2, for Hþ
2 Þ.

Fig. 3 (on the bottom panel) shows similar re-

sults for a molecule projectile, whose first ion has

a single-zeta screening with a = 2 (Zeff = 1). It is
pointed out that the interference between the pro-

jectile components is notably reduced, since the

characteristic screening length 1/a is only one

quarter of the molecule length. Then, the interac-

tion between the bare ion and the target electron

is much larger than the one from the screened part-

ner. This explains the significantly reduced differ-

ence between molecular SCA and independent
proton SCA calculations for screened projectiles.

Qualitatively similar results were found for differ-

ent values of / and for the case of Bohr screening

for a = 2 (not shown).

In conclusion, we have developed a simple for-

mula (Eqs. (11)–(13)) to evaluate the electronic en-

ergy loss as a function of impact-parameter for

cluster projectiles, valid for high clusters energies
and for a wide range of impact-parameters, includ-

ing the effect of screening. The input parameters

are only the target density and the oscillator
strengths, as well as the projectile screening param-

eter for all cluster components. This model repro-

duces the results of full SCA calculations and

is much less time consuming. Thus, the MPCA

model is very adequate for use in computer chan-
neling simulations.
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